129
Views
4
CrossRef citations to date
0
Altmetric
Food Analysis

Determination of Chlorophyll and Hardness in Cucumbers by Raman Spectroscopy with Successive Projections Algorithm (SPA) – Extreme Learning Machine (ELM)

, , , , &
Pages 1216-1228 | Received 01 Jul 2022, Accepted 08 Sep 2022, Published online: 19 Sep 2022

References

  • Dong, J., W. Guo, Z. Wang, D. Liu, and F. Zhao. 2016. Nondestructive determination of soluble solids content of ‘Fuji’ apples produced in different areas and bagged with different materials during ripening. Food Analytical Methods 9 (5):1087–95. doi:10.1007/s12161-015-0278-4.
  • Duarte, L., D. Paschoal, C. Izumi, M. Dolzan, V. Alves, G. Micke, H. Dos Santos, and M. Oliveira. 2017. Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in powder tabletop sweeteners by FT-Raman spectroscopy associated with the multivariate calibration: PLS, iPLS and siPLS models were compared. Food Research International (Ottawa, Ont.) 99 (Pt 1):106–14. doi:10.1016/j.foodres.2017.05.006.
  • Feng, L., M. Zhang, B. Adhikari, and Z. Guo. 2019. Nondestructive detection of postharvest quality of cherry tomatoes using a portable NIR spectrometer and chemometric algorithms. Food Analytical Methods 12 (4):914–25. doi:10.1007/s12161-018-01429-9.
  • Gao, Q., M. Wang, Y. Guo, X. Zhao, and D. He. 2019. Comparative analysis of non-destructive prediction model of soluble solids content for Malus micromalus Makino based on near-infrared spectroscopy. IEEE Access.7:128064–75. doi:10.1109/ACCESS.2019.2939579.
  • Jiang, H., T. Liu, and Q. Chen. 2020. Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system. Infrared Physics & Technology 109:103423. doi:10.1016/j.infrared.2020.103423.
  • Kaewsuksaeng, S., Y. Urano, S. Aiamla-or, M. Shigyo, and N. Yamauchi. 2011. Effect of UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan.) fruit. Postharvest Biology and Technology 61 (2-3):124–30. doi:10.1016/j.postharvbio.2011.02.014.
  • Lei, T., X. Lin, and D. Sun. 2019. Rapid classification of commercial cheddar cheeses from different brands using PLSDA, LDA and SPA–LDA models built by hyperspectral data. Journal of Food Measurement and Characterization 13 (4):3119–29. doi:10.1007/s11694-019-00234-0.
  • Li, J., Q. Li, X. J. Lei, W. Tian, J. Cao, W. Jiang, and M. Wang. 2018. Effects of wax coating on the moisture loss of cucumbers at different storage temperatures. Journal of Food Quality 2018:1–6. doi:10.1155/2018/9351821.
  • Li, Y., Y. Peng, and C. Zhai. 2018. A Raman spectrum detection method for quality of cucumber covered PE plastic wrap. Spectroscopy and Spectral Analysis 38:2800–5.
  • Li, Y., Y. Yin, H. Yu, and Y. Yuan. 2021. Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology. Journal of Food Measurement and Characterization 16 (1):76–84. doi:10.1007/s11694-021-01130-2.
  • Li, M., H. Yu, Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2021. Effects of double layer membrane loading eugenol on postharvest quality of cucumber. Lwt 145:111310. doi:10.1016/j.lwt.2021.111310.
  • Liu, D., E. Wang, G. Wang, P. Wang, C. Wang, and Z. Wang. 2021. Non-destructive sugar content assessment of multiple cultivars of melons by dielectric properties. Journal of the Science of Food and Agriculture 101 (10):4308–14. doi:10.1002/jsfa.11070.
  • Liu, H., Y. Chen, C. Shi, X. Yang, and D. Han. 2020. FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation. Lwt 119:108906. doi:10.1016/j.lwt.2019.108906.
  • Liu, X., Z. Cheng, and H. Meng. 2019. Changes in quality and pericarp pigment content of postharvest commercial cucumber fruit and their correlations. Journal of Northwest A&F University 47:78–84.
  • Liu, Y. M., Cheng, Y. He, Y. Zhang, and Z. Hou. 2019. Quantitative analysis of chlorophyll content in citrus leaves by Raman spectroscopy. Spectroscopy and Spectral Analysis 39:1768–72.
  • Magdas, D. A., F. Guyon, C. Berghian-Grosan, and C. M. Molnar. 2021. Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control 123:107769. doi:10.1016/j.foodcont.2020.107769.
  • Mandrile, L., A. M. Giovannozzi, F. Durbiano, G. Martra, and A. M. Rossi. 2018. Rapid and sensitive detection of pyrimethanil residues on pome fruits by Surface Enhanced Raman Scattering. Food Chemistry 244:16–24. doi:10.1016/j.foodchem.2017.10.003.
  • Nieuwoudt, M. K., S. E. Holroyd, C. M. McGoverin, M. C. Simpson, and D. E. Williams. 2016. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. Journal of Dairy Science 99 (4):2520–36. doi:10.3168/jds.2015-10342.
  • Olawuyi, I., J. Park, J. Lee, Lee, and W. Lee. 2019. Combined effect of chitosan coating and modified atmosphere packaging on fresh-cut cucumber. Food Science & Nutrition 7 (3):1043–52. doi:10.1002/fsn3.937.
  • Oroian, M., S. Ropciuc, and S. Paduret. 2018. Honey adulteration detection using Raman spectroscopy. Food Analytical Methods 11 (4):959–68. doi:10.1007/s12161-017-1072-2.
  • Qi, X., J. Jiang, X. Cui, and D. Yuan. 2020. Moldy peanut kernel identification using wavelet spectral features extracted from hyperspectral images. Food Analytical Methods 13 (2):445–56. doi:10.1007/s12161-019-01670-w.
  • Sanchez, L., A. Ermolenkov, X. Tang, C. Tamborindeguy, and D. Kurouski. 2020. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 251 (3):64. doi:10.1007/s00425-020-03359-5.
  • Sha, M., D. Gui, Z. Zhang, X. Ji, X. Shi, J. Liu, and D. Zhang. 2019. Evaluation of sample pretreatment method for geographic authentication of rice using Raman spectroscopy. Journal of Food Measurement and Characterization 13 (3):1705–12. doi:10.1007/s11694-019-00087-7.
  • Shan, N., Z. Gan, J. Nie, H. Liu, Z. Wang, and X. Sui. 2020. Comprehensive characterization of fruit volatiles and nutritional quality of three cucumber (Cucumis sativus L.) genotypes from different geographic groups after bagging treatment. Foods 9 (3):294. doi:10.3390/foods9030294.
  • Ullah, R., S. Khan, S. Javaid, H. Ali, M. Bilal, and M. Saleem. 2018. Raman spectroscopy combined with a support vector machine for differentiating between feeding male and female infants mother’s milk. Biomedical Optics Express 9 (2):844–51. doi:10.1364/BOE.9.000844.
  • Wang, M., L. Chen, Z. Liang, X. He, W. Liu, B. Jiang, J. Yan, P. Sun, Z. Cao, Q. Peng, et al. 2020. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC Plant Biology 20 (1):386. doi:10.1186/s12870-020-02597-9.
  • Weng, S., M. Qiu, R. Dong, F. Wang, L. Huang, D. Zhang, and J. Zhao. 2018. Fast detection of fenthion on fruit and vegetable peel using dynamic surface-enhanced Raman spectroscopy and random forests with variable selection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 200:20–5. doi:10.1016/j.saa.2018.04.012.
  • Yaseen, T., D. Sun, H. Pu, and T. Pan. 2018. Detection of omethoate residues in peach with surface-enhanced Raman spectroscopy. Food Analytical Methods 11 (9):2518–27. doi:10.1007/s12161-018-1233-y.
  • Yildiz Tiryaki, G, and H. Ayvaz. 2017. Quantification of soybean oil adulteration in extra virgin olive oil using portable Raman spectroscopy. Journal of Food Measurement and Characterization 11 (2):523–9. doi:10.1007/s11694-016-9419-8.
  • Zhang, J., S. Feng, J. Yuan, C. Wang, T. Lu, H. Wang, and C. Yu. 2021. The formation of fruit quality in Cucumis sativus L. Frontiers in Plant Science 12:729448. doi:10.3389/fpls.2021.729448.
  • Zhang, W., A. Cao, P. Shi, and L. Cai. 2021. Rapid evaluation of freshness of largemouth bass under different thawing methods using hyperspectral imaging. Food Control.125:108023. doi:10.1016/j.foodcont.2021.108023.
  • Zhao, Y-r., X-l Li, K-q Yu, F. Cheng, J-q Liu, and Y. He. 2017. Discriminate the rape sclerotinia at early stage based on confocal Raman spectroscopy. Guang pu Xue yu Guang pu Fen xi = Guang pu 37 (2):467–71.
  • Zhao, H., Y. Feng, W. Chen, and G. Jia. 2019. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Meat Science 151:75–81. doi:10.1016/j.meatsci.2019.01.010.
  • Zhu, L., J. Sun, G. Wu, Y. Wang, H. Zhang, L. Wang, H. Qian, and X. Qi. 2018. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy. Journal of Cereal Science 82:175–82. doi:10.1016/j.jcs.2018.06.010.
  • Zhu, N., Y. Yang, M. Ji, D. Wu, and K. Chen. 2019. Label-free visualization of lignin deposition in loquats using complementary stimulated and spontaneous Raman microscopy. Horticulture Research 6:72. doi:10.1038/s41438-019-0153-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.