138
Views
2
CrossRef citations to date
0
Altmetric
Metal Speciation

Determination of Vanadium(IV) and Vanadium(V) in Beverages by Two-Step Direct Immersion Single-Drop Microextraction with Graphite Furnace Atomic Absorption Spectrometry (GFAAS)

, , , &
Pages 1488-1501 | Received 21 Jul 2022, Accepted 09 Oct 2022, Published online: 21 Oct 2022

References

  • Alcalde-Isorna, L., M. C. Barciela-Alonso, and P. Bermejo-Barrera. 2011. Selective determination of V(IV) and V(V) in seawater by solid phase extraction and electrothermal atomic absorption spectrometry. Atomic Spectroscopy 32 (6):234–9. doi:10.46770/AS.2011.06.004.
  • Al Rawahi, W. A, and N. I. Ward. 2017. Field-based application of developed solid phase extraction with inductively coupled plasma mass spectrometry for vanadium speciation analysis of groundwaters from Argentina. Talanta 165:391–7. doi:10.1016/j.talanta.2016.12.078.
  • Asadollahi, T., S. Dadfarnia, and A. M. H. Shabani. 2010. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry. Talanta 82 (1):208–12. doi:10.1016/j.talanta.2010.04.020.
  • Berton, P., E. M. Martinis, L. D. Martinez, and R. G. Wuilloud. 2009. Room temperature ionic liquid-based microextraction for vanadium species separation and determination in water samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta 640 (1–2):40–6. doi:10.1016/j.aca.2009.03.028.
  • Chen, S., J. Liu, J. Yan, C. Wang, and D. Lu. 2022a. In-syringe solid phase extraction and in-syringe vortex-assisted solidified floating organic drop microextraction of Sb(III) and Sb(V) in rice wines with determination by graphite furnace atomic absorption spectrometry. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 39 (3):499–507. doi:10.1080/19440049.2021.2021301.
  • Chen, S., Y. Liu, C. Wang, J. Yan, and D. Lu. 2022b. Speciation of As(III) and As(V) in food by magnetic dispersive microsolid phase extraction with dispersive liquid-liquid microextraction with graphite furnace atomic absorption spectrometry (GFAAS) detection. Analytical Letters 55 (2):269–80. doi:10.1080/00032719.2021.1925290.
  • Chen, S., J. Yan, Y. Liu, C. Wang, and D. Lu. 2021a. Determination of Mn(II) and Mn(VII) in beverage samples using magnetic dispersive micro-solid phase extraction coupled with solidified floating organic drop microextraction followed by graphite furnace atomic absorption spectrometry. Food Chemistry 359:129958. doi:10.1016/j.foodchem.2021.129958.
  • Chen, S., L. Liu, and D. Tang. 2021b. Determination of total and inorganic selenium in selenium-enriched rice, tea, and garlic by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Analytical Letters 54 (11):1809–25. doi:10.1080/00032719.2020.1825466.
  • Chen, S., Y. Liu, C. Wang, J. Yan, and D. Lu. 2021c. Magnetic dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction followed by graphite furnace atomic absorption spectrometry for quantification of Se(IV) and Se(VI) in food samples. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure &Risk Assessment 38 (9):1539–50. doi:10.1080/19440049.2021.1927202.
  • Deng, D., S. Zhang, H. Chen, L. Yang, H. Yin, X. Hou, and C. Zheng. 2015. Online solid sampling platform using multi-wall carbon nanotube assisted matrix solid phase dispersion for mercury speciation in fish by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry 30 (4):882–7. doi:10.1039/C4JA00436A.
  • Esmaeilzadeh, M. 2019. A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchimica Acta 186 (1):3093-y. doi:10.1007/s00604-018-3093-y.
  • Fan, Z. F., B. Hu, and Z. Jiang. 2005. Speciation analysis of vanadium in natural water samples by electrothermal vaporization inductively coupled plasma optical emission spectrometry after separation/preconcentration with thenoyltrifluoroacetone immobilized on microcrystalline naphthalene. Spectrochimica Acta Part B: Atomic Spectroscopy 60 (1):65–71. doi:10.1016/j.sab.2004.10.004.
  • Ferreira, S. L. C., J. B. Pereira, L. C. Almeida, L. B. Santos, V. A. Lemos, C. G. Novaes, O. M. C. de Oliveira, and A. F. S. Queiroz. 2020. Strategies for inorganic speciation analysis employing spectrometric techniques-Review. Microchemical Journal 153:104402. doi:10.1016/j.microc.2019.104402.
  • Harrington, J. M., L. G. Haines, A. S. Essader, C. Liyanapatirana, E. P. Poitras, F. X. Weber, K. E. Levine, R. A. Fernando, V. G. Robinson, and S. Waidyanatha. 2021. Quantitation of total vanadium in rodent plasma and urine by inductively coupled plasma-mass spectrometry (ICP-MS). Analytical Letters 54 (17):2777–88. doi:10.1080/00032719.2021.1890107.
  • Imtiaz, M., M. S. Rizwan, S. Xiong, H. Li, M. Ashraf, S. M. Shahzad, M. Shahzad, M. Rizwan, and S. Tu. 2015. Vanadium, recent advancements and research prospects: A review. Environment International 80:79–88. doi:10.1016/j.envint.2015.03.018.
  • Letsoalo, M. R., M. A. Mamo, and A. A. Ambushe. 2021. Synchronous extraction and quantitative speciation of arsenic and chromium in sediments by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Analytical Letters 54 (12):1943–67. doi:10.1080/00032719.2020.1830103.
  • Mandal, S, and S. Lahiri. 2022. A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchemical Journal 175:107150. doi:10.1016/j.microc.2021.107150.
  • Ma, Z, and Q. Fu. 2009. Comparison of hypoglycemic activity and toxicity of vanadium(IV) and vanadium(V) absorbed in fermented mushroom of coprinus comatus. Biological Trace Element Research132 (1–3):278–84. doi:10.1007/s12011-009-8394-x.
  • Mortada, W. I., M. M. El-Defrawy, E. Erfan, and H. A. El-Asmy. 2022. Cloud point extraction coupled with back-extraction for speciation of inorganic vanadium in water and determination of total vanadium in food samples by ICP-OES. Journal of Food Composition and Analysis 108:104445. doi:10.1016/j.jfca.2022.104445.
  • Naeemullah, Tuzen, M, and T. G. Kazi. 2018. A new portable micropipette tip-syringe based solid phase microextraction for the determination of vanadium species in water and food samples. Journal of Industrial and Engineering Chemistry 57:188–92. doi:10.1016/j.jiec.2017.08.021.
  • Naeemullah, Tuzen, M., T. G. Kazi, D. Citak, and M. Soylak. 2013. Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 28 (9):1441–5. doi:10.1039/c3ja50174d.
  • Nunes, L. S., M. D. A. Korn, and V. A. Lemos. 2020. Direct immersion single-drop microextraction and continuous-flow microextraction for the determination of manganese in tonic drinks and seafood samples. Food Analytical Methods 13 (8):1681–9. doi:10.1007/s12161-020-01794-4.
  • Nunes, L. S., M. G. A. Korn, and V. A. Lemos. 2021. A novel direct-immersion single-drop microextraction combined with digital colorimetry applied to the determination of vanadium in water. Talanta 224:121893. doi:10.1016/j.talanta.2020.121893.
  • Pekiner, O. Z, Naeemullah, and M. Tüzen. 2014. Preconcentration and speciation of vanadium by three phases liquid-liquid microextraction prior to electrothermal atomic absorption spectrometry. Journal of Industrial and Engineering Chemistry 20 (4):1825–9. doi:10.1016/j.jiec.2013.08.037.
  • Perez, M. B., V. M. Lipinski, M. F. Fillipini, K. C. Madrid, M. Z. A. Arruda, and R. G. Wuilloud. 2021. Distribution, accumulation and speciation of selenium at the different growth stages of four garlic clones. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (9):1506–19. doi:10.1080/19440049.2021.1933206.
  • Pessoa, J. C., E. Garribba, M. F. A. Santos, and T. Santos-Silva. 2015. Vanadium and proteins: Uptake, transport, structure, activity and function. Coordination Chemistry Reviews301-302:49–86. doi:10.1016/j.ccr.2015.03.016.
  • Saraiva, M., R. Chekri, T. Guerin, J. J. Sloth, and P. Jitaru. 2021a. Chromium speciation analysis in raw and cooked milk and meat samples by species-specific isotope dilution and HPLC-ICP-MS. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (2):304–14. doi:10.1080/19440049.2020.1859144.
  • Saraiva, M., T. Guerin, P. Jitaru, and J. J. Sloth. 2021b. Ultra-trace speciation analysis of Cr(III) and Cr(VI) in rice using species-specific isotope dilution and HPLC-ICP-MS. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (10):1735–42. doi:10.1080/19440049.2021.1937710.
  • Ścibior, A., Ł. Pietrzyk, Z. Plewa, and A. Skiba. 2020. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology : Organ of the Society for Minerals and Trace Elements (GMS) 61:126508. doi:10.1016/j.jtemb.2020.126508.
  • Sturini, M., F. Maraschi, L. Cucca, G. Spini, G. Talamini, and A. Profumo. 2010. Determination of vanadium(V) in the particulate matter of emissions and working areas by sequential dissolution and solid-phase extraction. Analytical and Bioanalytical Chemistry 397 (1):395–9. doi:10.1007/s00216-009-3277-8.
  • Tafti, E. N., S. Dadfarnia, A. M. H. Shabani, and Z. D. Firouzabadi. 2018. Determination of vanadium species in water, vegetables, and fruit samples using supramolecular solvent microextraction combined with electrothermal atomic absorption spectrometry. Journal of the Iranian Chemical Society 15 (8):1899–906. doi:10.1007/s13738-018-1387-y.
  • Tegladza, I. D., T. Qi, T. Chen, K. Alorku, S. Tang, W. Shen, D. Kong, A. Yuan, J. Liu, and H. K. Lee. 2020. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. Journal of Hazardous Materials 393:122403. doi:10.1016/j.jhazmat.2020.122403.
  • Temel, N. K., B. Kuş, and R. Gürkan. 2019. A new ion-pair ultrasound assisted-cloud point extraction approach for determination of trace V(V) and V(IV) in edible vegetal oils and vinegar by spectrophotometry. Microchemical Journal 150:104139. doi:10.1016/j.microc.2019.104139.
  • Thosago, M. M., A. Botha, A. A. Ambushe, and T. W. Godeto. 2022. Quantification of arsenic species in wheat flour samples by ion chromatography coupled to high resolution inductively coupled plasma-mass spectrometry (IC-HR-ICP-MS). Analytical Letter 55 (18):2860–2875. doi:10.1080/00032719.2022.2075883.
  • Uslu, M., H. Ulutürk, A. Yartaşı, and S. Döker. 2013. A sensitive method for selective determination of vanadium species by dispersive liquid-liquid microextraction (DLLME) with spectrophotometric detection. Toxicological & Environmental Chemistry 95 (10):1638–49. doi:10.1080/02772248.2014.896920.
  • Vieira, M. A., P. Grinberg, C. R. R. Bobeda, M. N. M. Reyes, and R. C. Campos. 2009. Non-chromatographic atomic spectrometric methods in speciation analysis: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 64 (6):459–76. doi:10.1016/j.sab.2009.04.010.
  • Wen, S, and X. Zhu. 2018. Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry. Talanta 181:265–70. doi:10.1016/j.talanta.2017.12.083.
  • Xiao, Z., J. Wang, J. Guo, D. Suo, S. Wang, J. Tian, L. Guo, and X. Fan. 2021. Quantitative selenium speciation in feed by enzymatic probe sonication and ion chromatography-inductively coupled plasma mass spectrometry. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure &Risk Assessment 38 (2):268–79. doi:10.1080/19440049.2020.1849820.
  • Xu, F., J. Hu, J. Zhang, X. Hou, and X. Jiang. 2018a. Nanomaterials in speciation analysis of mercury, arsenic, selenium, and chromium by analytical atomic/molecular spectrometry. Applied Spectroscopy Reviews 53 (2–4):333–48. doi:10.1080/05704928.2017.1323310.
  • Xu, F., Z. Zou, J. He, M. Li, K. Xu, and X. Hou. 2018b. In situ formation of nano-CdSe as a photocatalyst: Cadmium ion-enhanced photochemical vapour generation directly from Se(VI). Chemical Communications (Cambridge, England) 54 (38):4874–7. doi:10.1039/c8cc01513a.
  • Yang, H., R. Jian, J. Liao, J. Cui, P. Fang, Z. Zou, and K. Huang. 2022. Recent development of non-chromatographic atomic spectrometry for speciation analysis of mercury. Applied Spectroscopy Reviews 57 (6):441–60. doi:10.1080/05704928.2021.1893183.
  • Yang, Y., Q. Tan, Y. Lin, Y. Tian, L. Wu, X. Hou, and C. Zheng. 2018. Point discharge optical emission spectrometer as a gas chromatography (GC) detector for speciation analysis of mercury in human hair. Analytical Chemistry 90 (20):11996–2003. doi:10.1021/acs.analchem.8b02607.
  • Yao, L., Y. Zhu, W. Xu, H. Wang, X. Wang, J. Zhang, H. Liu, and C. Lin. 2019. Combination of dispersive solid phase extraction with dispersive liquid-liquid microextraction for the sequential speciation and preconcentration of Cr(III) and Cr(VI) in water samples prior to graphite furnace atomic absorption spectrometry determination. Journal of Industrial and Engineering Chemistry 72:189–95. doi:10.1016/j.jiec.2018.12.018.
  • Zhang, Z., Y. Lu, H. Li, N. Zhang, J. Cao, B. Qiu, and Z. Yang. 2021. Simultaneous separation of Sb(III) and Sb(V) by high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometry (ICP-MS) with application to plants, soils, and sediments. Analytical Letters 54 (6):919–34. doi:10.1080/00032719.2020.1788049.
  • Zhou, D., Y. Lin, H. Long, Y. Xu, B. Wang, L. Xian, C. Xia, X. Hou, and C. Zheng. 2021. Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 180:106211. doi:10.1016/j.sab.2021.106211.
  • Zou, W., C. Li, J. Hu, and X. Hou. 2020. Selective determination of Cr(VI) and non-chromatographic speciation analysis of inorganic chromium by chemical vapor generation-inductively coupled plasma mass spectrometry. Talanta 218:121128. doi:10.1016/j.talanta.2020.121128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.