145
Views
1
CrossRef citations to date
0
Altmetric
BIOSENSORS

Electrochemical Determination of Homocysteine Using Self-Assembled 6-Ferrocenylhexanethiol on a Molybdenum Disulfide Nanoparticle Modified Glassy Carbon Electrode (GCE)

, & ORCID Icon
Pages 1566-1576 | Received 19 May 2022, Accepted 17 Oct 2022, Published online: 04 Nov 2022

References

  • Agüí, L., C. Peña-Farfal, P. Yáñez-Sedeño, and J. M. Pingarrón. 2007. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Talanta 74 (3):412–20. doi:10.1016/j.talanta.2007.05.035.
  • Beitollahi, H., R. Zaimbashi, M. T. Mahani, and S. Tajik. 2020. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry (Amsterdam, Netherlands) 134:107497. doi:10.1016/j.bioelechem.2020.107497.
  • Bonde, J., P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff. 2008. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions 140 (0):219–31. doi:10.1039/B803857K.
  • Bonifácio, V. D. B., S. A. Pereira, J. Serpa, and J. B. Vicente. 2021. Cysteine metabolic circuitries: Druggable targets in cancer. British Journal of Cancer 124 (5):862–79. doi:10.1038/s41416-020-01156-1.
  • Butler, S. Z., S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, et al. 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7 (4):2898–926. doi:10.1021/nn400280c.
  • Cannon, P, and F. J. Norton. 1964. Reaction between molybdenum disulphide and water. Nature 203 (4946):750–1. doi:10.1038/203750a0.
  • Chou, S. S., M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang, and V. P. Dravid. 2013. Ligand conjugation of chemically exfoliated MoS2. Journal of the American Chemical Society 135 (12):4584–7. doi:10.1021/ja310929s.
  • Cramer, D. A. 1998. Homocysteine vs cholesterol: competing views, or a unifying explanation of arteriosclerotic cardiovascular disease? Laboratory Medicine 29 (7):410–7. doi:10.1093/labmed/29.7.410.
  • Dahlgren, R. L., J. S. Page, and J. V. Sweedler. 1999. Assaying neurotransmitters in and around single neurons with information-rich detectors. Analytica Chimica Acta 400 (1-3):13–26. doi:10.1016/S0003-2670(99)00606-6.
  • Farooqui, J., S. Kim, and W. K. Paik. 1983. Measurement of isoelectric point of S-adenosyl-L-methionine and its metabolic products by an isoelectric focusing technique. Electrophoresis 4 (4):261–5. doi:10.1002/elps.1150040402.
  • Ferin, R., M. L. Pavão, and J. Baptista. 2012. Methodology for a rapid and simultaneous determination of total cysteine, homocysteine, cysteinylglycine and glutathione in plasma by isocratic RP-HPLC. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 911:15–20. doi:10.1016/j.jchromb.2012.10.022.
  • Gao, W., S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529 (7587):509–14. doi:10.1038/nature16521.
  • Hansen, R. E., H. Østergaard, P. Nørgaard, and J. R. Winther. 2007. Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4′-dithiodipyridine. Analytical Biochemistry 363 (1):77–82. doi:10.1016/j.ab.2007.01.002.
  • Hellmuth, C., B. Koletzko, and W. Peissner. 2011. Aqueous normal phase chromatography improves quantification and qualification of homocysteine, cysteine and methionine by liquid chromatography–tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 879 (1):83–9. doi:10.1016/j.jchromb.2010.11.016.
  • Hosseinzadeh, L., A. Khoshroo, K. Adib, M. Rahimi-Nasrabadi, and F. Ahmadi. 2021. Determination of homocysteine using a dopamine-functionalized graphene composite. Microchemical Journal 165:106124. doi:10.1016/j.microc.2021.106124.
  • Ivanov, A. R., I. V. Nazimov, and L. A. Baratova. 2000. Qualitative and quantitative determination of biologically active low-molecular-mass thiols in human blood by reversed-phase high-performance liquid chromatography with photometry and fluorescence detection. Journal of Chromatography. A 870 (1-2):433–42. doi:10.1016/S0021-9673(99)00947-4.
  • Jakubowski, H. 2019. Homocysteine modification in protein structure/function and human disease. Physiological Reviews 99 (1):555–604. doi:10.1152/physrev.00003.2018.
  • Kasuya, M, and K. Kurihara. 2014. Characterization of ferrocene-modified electrode using electrochemical surface forces apparatus. Langmuir : The ACS Journal of Surfaces and Colloids 30 (24):7093–7. doi:10.1021/la5009347.
  • Liu, D., Y. Bian, Z. Zhu, Y. Shao, and M. Li. 2022. Detection of trace water based on electro-oxidation of molybdenum disulfide nanomaterials to form molybdenum oxysulfide. ACS Applied Materials and Interfaces 14:23850−8. doi:10.1021/acsami.2c02432.
  • Mak, K. F., C. Lee, J. Hone, J. Shan, and T. F. Heinz. 2010. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 105 (13):136805. doi:10.1103/PhysRevLett.105.136805.
  • Mansoor, M. A., A. M. Svardal, and P. M. Ueland. 1992. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Analytical Biochemistry 200 (2):218–29. doi:10.1016/0003-2697(92)90456-H.
  • Nekrassova, O., N. S. Lawrence, and R. G. Compton. 2003. Analytical determination of homocysteine: A review. Talanta 60 (6):1085–95. doi:10.1016/S0039-9140(03)00173-5.
  • Oliveira, P. V. S, and F. R. M. Laurindo. 2018. Implications of plasma thiol redox in disease. Clinical Science (London, England : 1979) 132 (12):1257–80. doi:10.1042/CS20180157.
  • Pernet, P., E. Lasnier, and M. Vaubourdolle. 2000. Evaluation of the AxSYM homocysteine assay and comparison with the IMx homocysteine assay. Clinical Chemistry 46 (9):1440–1. doi:10.1093/clinchem/46.9.1440.
  • Qi, L., H. Tian, and H.-Z. Yu. 2018. Binary thiolate DNA/ferrocenyl self-assembled monolayers on gold: a versatile platform for probing biosensing interfaces. Analytical Chemistry 90 (15):9174–81. doi:10.1021/acs.analchem.8b01655.
  • Rajaram, R, and J. Mathiyarasu. 2018. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide. Colloids and Surfaces. B, Biointerfaces 170:109–14. doi:10.1016/j.colsurfb.2018.05.066.
  • Stragliotto, M. F., J. L. Fernández, S. A. Dassie, and C. E. Giacomelli. 2018. An integrated experimental-theoretical approach to understand the electron transfer mechanism of adsorbed ferrocene-terminated alkanethiol monolayers. Electrochimica Acta 265:303–15. doi:10.1016/j.electacta.2017.12.091.
  • To-Figueras, J., R. Wijngaard, J. García-Villoria, A. K. Aarsand, P. Aguilera, R. Deulofeu, M. Brunet, À. Gómez-Gómez, O. J. Pozo, and S. Sandberg. 2021. Dysregulation of homocysteine homeostasis in acute intermittent porphyria patients receiving heme arginate or givosiran. Journal of Inherited Metabolic Disease 44 (4):961–71. doi:10.1002/jimd.12391.
  • Wang, S. 2021. Assembly of a Nanogold-assisted aptamer sensor for highly sensitive detection of homocysteine. International Journal of Electrochemical Science 16:211129. doi:10.20964/2021.11.34.
  • Wang, N., M. Chen, J. Gao, X. Ji, J. He, J. Zhang, and W. Zhao. 2019. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 195:281–9. doi:10.1016/j.talanta.2018.11.066.
  • Wang, T., L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu, and M. Li. 2013. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy & Environmental Science 6 (2):625–33. doi:10.1039/C2EE23513G.
  • Wen, X.-H., X.-F. Zhao, B.-F. Peng, K.-P. Yuan, X.-X. Li, L.-Y. Zhu, and H.-L. Lu. 2021. Facile preparation of an electrochemical aptasensor based on Au NPs/graphene sponge for detection of homocysteine. Applied Surface Science 556:149735. doi:10.1016/j.apsusc.2021.149735.
  • Wrońska, M., G. Chwatko, K. Borowczyk, J. Piechocka, P. Kubalczyk, and R. Głowacki. 2018. Application of GC–MS technique for the determination of homocysteine thiolactone in human urine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1099:18–24. doi:10.1016/j.jchromb.2018.09.009.
  • Xu, M., T. Liang, M. Shi, and H. Chen. 2013. Graphene-Like two-dimensional materials. Chemical Reviews 113 (5):3766–98. doi:10.1021/cr300263a.
  • Zhang, X.-D., J. Zhang, J. Wang, J. Yang, J. Chen, X. Shen, J. Deng, D. Deng, W. Long, Y.-M. Sun, et al. 2016. Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 10 (4):4511–9. doi:10.1021/acsnano.6b00321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.