130
Views
1
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Characterization of the Influence of Bovine Serum Albumin (BSA) upon the Electronic Properties and Surface Topography of a Ti-3Cu Biomedical Alloy by Mott-Schottky Analysis (MSA) and Atomic Force Microscopy (AFM)

, , , &
Pages 1675-1684 | Received 21 May 2022, Accepted 21 Oct 2022, Published online: 31 Oct 2022

References

  • Ansari, G, and A. Fattah-Alhosseini. 2017. On the passive and semiconducting behavior of severely deformed pure titanium in ringer’s physiological solution at 37 °C: A trial of the point defect model. Materials Science & Engineering. C, Materials for Biological Applications 75:64–71. doi:10.1016/j.msec.2017.02.046.
  • Bott, A. W. 1998. Electrochemistry of semiconductors. Bioanalytical Systems, Inc 17 (3):87–91. http://currentseparations.com/issues/17-3/cs-17-3d.pdf.
  • Cámara, O. R., L. B. Avalle, and F. Y. Oliva. 2010. Protein adsorption on titanium dioxide: Effects on double layer and semiconductor space charge region studied by EIS. Electrochimica Acta 55 (15):4519–28. doi:10.1016/j.electacta.2010.03.003.
  • Fattah-Alhosseini, A, and S. Tofangsaz. 2018. Passive and semiconducting properties assessment of passive oxide films forming on Ti–6Al–4V titanium alloy in ringer’s physiological solution at 37 °C: Role of immersion time and anoic passive potential. Analytical & Bioanalytical Electrochemistry 10 (4):414–28.
  • Felgueiras, H. P., J. C. Antunes, M. C. L. Martins, and M. A. Barbosa. 2018. Fundamentals of protein and cell interactions in biomaterials. In Peptides and proteins as biomaterials for tissue regeneration and repair, 1–27. Philadelphia, PA: Woodhead Publishing. doi:10.1016/C2015-0-01811-1. For Chapter 1 10.1016/B978-0-08-100803-4.00001-2.
  • Fernandez-Domene, R. M., E. Blasco-Tamarit, D. M. Garcia-Garcia, and J. G. Anton. 2014. Passivity breakdown of titanium in LiBr solutions. Journal of the Electrochemical Society 161 (1):C25–C35. doi:10.1149/2.035401jes.
  • Grigoriou, E., M. Cantini, M. J. Dalby, A. Petersen, and M. Salmeron-Sanchez. 2017. Cell migration on material-driven fibronectin microenvironments. Biomaterials Science 5 (7):1326–33. doi:10.1039/c7bm00333a.
  • Jing, P. P., Y. X. Li, Y. H. Su, W. L. Liang, and Y. X. Leng. 2022. The role of metal ions in the behavior of bovine serum albumin molecules under physiological environment. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 267 (Pt 2):120604. doi:10.1016/j.saa.2021.120604.
  • Kofstad, P. 1967. Note on the defect structure of rutile (TiO2). Journal of the Less Common Metals 13 (6):635–8. DOI: 10.1016/0022-5088(67)90111-7.
  • Liu, R., K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R. P. Allaker, L. Ren, and K. Yang. 2016. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Scientific Reports (6): 29985. doi:10.1038/srep29985.
  • Liu, R., Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, and K. Yang. 2018. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dental Materials: Official Publication of the Academy of Dental Materials 34 (8):1112–26. doi:10.1016/j.dental.2018.04.007.
  • Liu, H., Y. Zhao, C. Sui, Y. Li, M. A. Siddiqui, S. Li, T. Li, S. Zhang, H. Wang, T. Jin, et al. 2022. Effect of N2 partial pressure on comprehensive properties of antibacterial TiN/Cu nanocomposite coating. International Journal of Minerals, Metallurgy, and Materials. doi:10.1007/s12613-021-2387-y.
  • Long, Y., D. G. Li, and D. R. Chen. 2017. Influence of square wave anodization on the electronic properties and structures of the passive films on Ti in sulfuric acid solution. Applied Surface Science 425:83–94. doi:10.1016/j.apsusc.2017.06.319.
  • Ma, Z., M. Li, R. Liu, L. Ren, Y. Zhang, H. Pan, Y. Zhao, and K. Yang. 2016. In vitro study on an antibacterial Ti–5Cu alloy for medical application. Journal of Materials Science. Materials in Medicine 27 (5):91. doi:10.1007/s10856-016-5698-1.
  • Marsh, J, and D. Gorse. 1998. A photoelectrochemical and AC impedance study of anodic titanium oxide films. Electrochimica Acta 43 (7):659–70. doi:10.1016/S0013-4686(97)00210-7.
  • Martha, S., S. Mansingh, K. M. Parida, and A. Thirumurugan. 2017. Exfoliated metal free homojunction photocatalyst prepared by a biomediated route for enhanced hydrogen evolution and Rhodamine B degradation. Materials Chemistry Frontiers 1 (8):1641–53. doi:10.1039/C7QM00055C.
  • Munirathinam, B., R. Narayanan, and L. Neelakantan. 2016. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions. Thin Solid Films.598:260–70. doi:10.1016/j.tsf.2015.12.025.
  • Ortiz-Dosal, L. C, E. S. Kolosovas-Machuca, M. C. Rodríguez-Aranda, E. López-Luna, H. Hernández-Arriaga, G. Vera-Reveles, and F. J. Gonzalez. 2017. Bioanalysis by immobilization of antibodies on hafnium(IV) oxide with 3-aminopropyltriethoxysilane. Analytical Letters 50 (18):2937–43. doi:10.1080/00032719.2017.1320666.
  • Rahimi, E., R. Offoiach, K. Baert, H. Terryn, L. Fedrizzi, and M. Lekka. 2022. Albumin protein adsorption on CoCrMo implant alloy: Impact on the corrosion behaviour at localized scale. Journal of the Electrochemical Society 169 (3):031507. doi:10.1149/1945-7111/ac5a1b.
  • Ren, L., Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, and K. Yang. 2014. Antibacterial properties of Ti–6Al–4V–xCu alloys. Journal of Materials Science & Technology 30 (7):699–705. doi:10.1016/j.jmst.2013.12.014.
  • Revathi, A., A. D. Borrás, A. I. Muñoz, C. Richard, and G. Manivasagam. 2017. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Materials Science & Engineering. C, Materials for Biological Applications 76:1354–68. doi:10.1016/j.msec.2017.02.159.
  • Roh, B, and D. D. Macdonald. 2019a. The passivity of titanium—part III: Characterization of the anodic oxide film. Journal of Solid State Electrochemistry 23 (7):2001–8. doi:10.1007/s10008-019-04255-z.
  • Roh, B, and D. D. Macdonald. 2019b. Passivity of titanium: Part II, the defect structure of the anodic oxide film. Journal of Solid State Electrochemistry 23 (7):1967–79. doi:10.1007/s10008-019-04254-0.
  • Siddiqui, M. A., L. Ren, D. D. Macdonald, and K. Yang. 2021. Effect of Cu on the passivity of Ti–xCu (x = 0, 3 and 5 Wt%) alloy in phosphate-buffered saline solution within the framework of PDM-II. Electrochimica Acta 386:138466. doi:10.1016/j.electacta.2021.138466.
  • Siddiqui, M. A., I. Ullah, H. Liu, S. Zhang, L. Ren, and K. Yang. 2021. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy. Journal of Materials Science & Technology 80:117–27. doi:10.1016/j.jmst.2020.11.046.
  • Silva-Bermudez, P, and S. E. Rodil. 2013. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surface and Coatings Technology 233:147–58. doi:10.1016/j.surfcoat.2013.04.028.
  • Wang, Q., B. Zhang, Y. Ren, and K. Yang. 2018. A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance. Corrosion Science 145:55–66. doi:10.1016/j.corsci.2018.09.013.
  • Wang, J., S. Zhang, Z. Sun, H. Wang, L. Ren, and K. Yang. 2019. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. Journal of Materials Science & Technology 35 (10):2336–44. doi:10.1016/j.jmst.2019.03.044.
  • Zhang, E., F. Li, H. Wang, J. Liu, C. Wang, M. Li, and K. Yang. 2013. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Materials Science & Engineering. C, Materials for Biological Applications 33 (7):4280–7. doi:10.1016/j.msec.2013.06.016.
  • Zhang, E., X. Wang, M. Chen, and B. Hou. 2016. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Materials Science & Engineering. C, Materials for Biological Applications 69:1210–21. doi:10.1016/j.msec.2016.08.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.