96
Views
1
CrossRef citations to date
0
Altmetric
Chemiluminescence

Label-Free Electrochemiluminescent (ECL) Determination of Mercury (II) Based upon the Cation Exchange Reaction with Cadmium Sulfide Nanowires

, , , &
Pages 1884-1895 | Received 26 Aug 2022, Accepted 16 Nov 2022, Published online: 05 Dec 2022

References

  • Babamiri, B., A. Salimi, and R. Hallaj. 2018. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher. Biosensors & Bioelectronics 102:328–35. doi:10.1016/j.bios.2017.11.034.
  • Burylin, M. Y., K. A. Romanovskiy, Z. A. Temerdashev, and E. F. Galai. 2019. Determination of mercury in sediments by slurry sampling electrothermal atomic absorption spectrometry. Journal of Analytical Chemistry 74 (12):1184–91. doi:10.1134/S1061934819120037.
  • Cao, S. P., H. M. Hu, R. P. Liang, and J. D. Qiu. 2020b. An ultrasensitive electrochemiluminescence resonance energy transfer biosensor for divalent mercury monitoring. Journal of Electroanalytical Chemistry 856:113494. doi:10.1016/j.jelechem.2019.113494.
  • Cao, S. P., Q. X. Luo, Y. J. Li, R. P. Liang, and J. D. Qiu. 2020a. Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ detection. Chemical Communications (Cambridge, England) 56 (42):5625–8. doi:10.1039/d0cc01311k.
  • Chen, C. Y., C. T. Driscoll, K. F. Lambert, R. P. Mason, and E. M. Sunderland. 2016. Connecting mercury science to policy: From sources to seafood. Reviews on Environmental Health 31 (1):17–20. doi:10.1515/reveh-2015-0044.
  • Dai, D. H., J. Yang, Y. Wang, and Y. W. Yang. 2021. Recent progress in functional materials for selective detection and removal of mercury (II) ions. Advanced Functional Materials 31 (1):2006168–25. doi:10.1002/adfm.202006168.
  • Dong, Y. X., J. T. Cao, B. Wang, S. H. Ma, and Y. M. Liu. 2017b. Exciton–plasmon interactions between CdS@g-C3N4 heterojunction and Au@Ag nanoparticles coupled with DNAase-triggered signal amplification: Toward highly sensitive photoelectrochemical bioanalysis of MicroRNA. ACS Sustainable Chemistry & Engineering 5 (11):10840–8. doi:10.1021/acssuschemeng.7b02774.
  • Dong, W., Q.-Q. Gai, R.-F. Huang, and X. Zheng. 2017a. Label-free electrochemiluminescence assay for aqueous Hg2+ through oligonucleotide mediated assembly of gold nanoparticles. Biosensors and Bioelectronics 98:134–9. doi:10.1016/j.bios.2017.06.054.
  • Fashi, A., M. R. Yaftian, and A. Zamani. 2017. Electromembrane extraction-preconcentration followed by microvolume UV-Vis spectrophotometric determination of mercury in water and fish samples. Food Chemistry 221:714–20. doi:10.1016/j.foodchem.2016.11.115.
  • Gu, Y., Z. Y. Jiang, D. B. Ren, Y. Shang, Y. D. Hu, and L. Z. Yi. 2021. Electrochemiluminescence sensor based on the target recognition-induced aggregation of sensing units for Hg2+ determination. Sensors and Actuators B: Chemical 337:129821. doi:10.1016/j.snb.2021.129821.
  • Guo, X. Y., F. Chen, F. Wang, Y. P. Wu, Y. Ying, Y. Wen, H. F. Yang, and Q. F. Ke. 2020. Recyclable Raman chip for detection of trace mercury ions. Chemical Engineering Journal 390:124528. doi:10.1016/j.cej.2020.124528.
  • He, Z. J., T. F. Kang, L. P. Lu, and S. Y. Cheng. 2020. An electrochemiluminescence sensor based on CdSe@CdS-functionalized MoS2 and a GOD-labeled DNA probe for the sensitive detection of Hg (ii). Analytical Methods 12 (4):491–8. doi:10.1039/C9AY02524C.
  • Hu, L. Q., Z. M. Liu, Y. J. Hu, H. J. Zhan, J. L. Zhu, and X. G. Ge. 2018. Fabrication of high-intensity electron transfer electrochemiluminescence interface for Hg2+ detection by using reduced graphene oxide-Au nanoparticles nanocomposites and CdS quantum dots. Journal of Electroanalytical Chemistry 823:397–406. doi:10.1016/j.jelechem.2018.06.029.
  • Hu, Y. X., Y. Liu, S. Wang, Z. Y. Guo, Y. F. Hu, and H. Z. Xie. 2019. A novel surface-tethered double-signal electrochemiluminescence sensor based on luminol@Au and CdS quantum dots for mercury ion detection. ChemistrySelect 4 (10):2926–32. doi:10.1002/slct.201802150.
  • Li, X., C. Bian, X. Meng, and F. S. Xiao. 2016. Design and synthesis of an efficient nanoporous adsorbent for Hg2+ and Pb2+ ions in water. Journal of Materials Chemistry A 4 (16):5999–6005. doi:10.1039/C6TA00987E.
  • Li, L. B., B. N. Chen, L. J. Luo, X. H. Liu, X. Y. Bi, and T. Y. You. 2021. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2-Ru@SiO2-NGQDs. Talanta 222:121579. doi:10.1016/j.talanta.2020.121579.
  • Li, Z. P., W. X. Dong, X. Y. Du, G. M. Wen, and X. J. Fan. 2020. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchemical Journal 152:104259. doi:10.1016/j.microc.2019.104259.
  • Li, Y. P., Y. J. Li, J. L. Duan, J. Y. Hou, Q. Hou, Y. C. Yang, H. S. Li, and S. Y. Ai. 2021. Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals. Microchemical Journal 161:105790. doi:10.1016/j.microc.2020.105790.
  • Li, J., W. W. Tu, H. B. Li, M. Han, Y. Q. Lan, Z. H. Dai, and J. C. Bao. 2014. In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized graphene. Analytical Chemistry 86 (2):1306–12. doi:10.1021/ac404121c.
  • Liu, F. R., J. T. Cao, Y. L. Wang, X. L. Fu, S. W. Ren, and Y. M. Liu. 2018b. A spatial-resolved electrochemiluminescence aptasensor for carcinoembryonic antigen detection in a double-check mode. Sensors and Actuators B: Chemical 276:173–9. doi:10.1016/j.snb.2018.08.082.
  • Liu, Y., Y. Deng, T. T. Li, Z. Chen, H. Chen, S. Li, and H. G. Liu. 2018a. Aptamer-based electrochemical biosensor for mercury ions detection using Au NPs-modified glass carbon electrode. Journal of Biomedical Nanotechnology 14 (12):2156–61. doi:10.1166/jbn.2018.2655.
  • Liu, S. J., X. D. Wang, G. L. Guo, and Z. G. Yan. 2021. Status and environmental management of soil mercury pollution in China: A review. Journal of Environmental Management 277:111442. doi:10.1016/j.jenvman.2020.111442.
  • Li, L. B., J. Y. Zhang, W. L. Zhao, X. H. Liu, L. J. Luo, X. Y. Bi, L. Chen, and T. Y. You. 2021. DNA-modified electrochemiluminescent tris (4,4′-Dicarboxylicacid-2,2′-Bipyridyl) ruthenium (II) dichloride and assistant DNA-modified carbon nitride quantum dots for Hg2+ detection. ACS Applied Nano Materials 4 (2):1009–18. doi:10.1021/acsanm.0c02467.
  • Ma, Y. D., Y. J. Yu, X. Y. Mu, C. Yu, Y. Zhou, J. Chen, S. T. Zheng, and J. L. He. 2021. Enzyme-induced multicolor colorimetric and electrochemiluminescence sensor with a smartphone for visual and selective detection of Hg2. +Journal of Hazardous Materials 415:125538. doi:10.1016/j.jhazmat.2021.125538.
  • More, P. V., C. Hiragond, S. Bhanoth, and P. K. Khanna. 2018. Selective synthesis of α or β-HgS nanocrystals via core/shell formation using surface modified CdS quantum dots. Journal of Nanoscience and Nanotechnology 18 (1):242–50. doi:10.1166/jnn.2018.14589.
  • Nemati, F., and M. Hosseini. 2021. Recent advances in electrochemiluminescence sensors for Hg2+ ion detection: A review. Analytical and Bioanalytical Electrochemistry 13 (2):296–304.
  • Rex, M., F. E. Hernandez, and A. D. Campiglia. 2006. Pushing the limits of mercury sensors with gold nanorods. Analytical Chemistry 78 (2):445–51. doi:10.1021/ac051166r.
  • Shi, Z. X., G. K. Li, and Y. F. Hu. 2019. Progress on the application of electrochemiluminescence biosensor based on nanomaterials. Chinese Chemical Letters 30 (9):1600–6. doi:10.1016/j.cclet.2019.04.066.
  • Tong, Y. J., J. X. Qi, A. M. Song, X. L. Zhong, W. Jiang, L. Zhang, R. P. Liang, and J. D. Qiu. 2020. Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2. +Analytica Chimica Acta 1128:11–8. doi:10.1016/j.aca.2020.06.047.
  • Wang, C., M. Chen, J. L. Wu, F. J. Mo, and Y. Z. Fu. 2019. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Analytica Chimica Acta 1086:66–74. doi:10.1016/j.aca.2019.08.012.
  • Wang, D. M., Q. Q. Gai, R. F. Huang, and X. W. Zheng. 2017. Label-free electrochemiluminescence assay for aqueous Hg2+ through oligonucleotide mediated assembly of gold nanoparticles. Biosensors & Bioelectronics 98:134–9. doi:10.1016/j.bios.2017.06.054.
  • Wang, D. F., L. H. Guo, R. Huang, B. Qiu, Z. Y. Lin, and G. N. Chen. 2014. Surface enhanced electrochemiluminescence for ultrasensitive detection of Hg2+. Electrochimica Acta 150:123–8. doi:10.1016/j.electacta.2014.10.121.
  • Xue, T. Y., K. Qi, and C. Q. Hu. 2019. Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion. Sensors and Actuators B: Chemical 284:589–94. doi:10.1016/j.snb.2019.01.004.
  • Yuan, T., Z. Y. Liu, L. Z. Hu, L. Zhang, and G. B. Xu. 2011. Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chemical Communications (Cambridge, England) 47 (43):11951–3. doi:10.1039/c1cc14854k.
  • Zhang, Z. H., R. Si, J. T. Lv, Y. Y. Ji, W. S. Chen, W. Y. Guan, Y. X. Cui, and T. Zhang. 2020. Effects of extracellular polymeric substances on the formation and methylation of mercury sulfide nanoparticles. Environmental Science & Technology 54 (13):8061–71. doi:10.1021/acs.est.0c01456.
  • Zhao, L. Z., Y. Z. Fu, S. W. Ren, J. T. Cao, and Y. M. Liu. 2021. A novel chemiluminescence imaging immunosensor for prostate specific antigen detection based on a multiple signal amplification strategy. Biosensors & Bioelectronics 171:112729. doi:10.1016/j.bios.2020.112729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.