114
Views
0
CrossRef citations to date
0
Altmetric
Chromatography

Do Storage Conditions Affect Collected Cookstove Emission Samples? Implications for Field Studies

ORCID Icon, , , ORCID Icon, , , , , , , , & show all
Pages 1911-1931 | Received 07 Sep 2022, Accepted 18 Nov 2022, Published online: 20 Dec 2022

References

  • Aboubacar, B., X. Deyi, M. Y. A. Razak, and B. H. Leyla. 2018. The effect of PM2.5 from household combustion on life expectancy in sub-Saharan Africa. International Journal of Environmental Research and Public Health 15 (4):748–62. doi:10.3390/ijerph15040748.
  • Agilent. 2019. Agilent application note 5994-0485EN “Analysis of European Union Polyaromatic Hydrocarbons (EUPAH) with Agilent 8890 GC”. Accessed December 15, 2022. https://www.agilent.com/cs/library/applications/application-polyaromatic-hydrocarbons-eupah-8890-gc-5994-0485en-agilent.pdf.
  • Anderson, J. O., J. G. Thundiyil, and A. Stolbach. 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology 8 (2):166–75. doi:10.1007/s13181-011-0203-1.
  • Anderson, K. A., M. J. Szelewski, G. Wilson, B. D. Quimby, and P. D. Hoffman. 2015. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses. Journal of Chromatography. A 1419:89–98. doi:10.1016/j.chroma.2015.09.054.
  • Anenberg, S. C., K. Balakrishnan, J. Jetter, O. Masera, S. Mehta, J. Moss, and V. Ramanathan. 2013. Cleaner cooking solutions to achieve health, climate, and economic cobenefits. Environmental Science & Technology 47 (9):3944–52. doi:10.1021/es304942e.
  • Apte, J. S., M. Brauer, A. J. Cohen, M. Ezzati, and C. A. Pope III. 2018. Ambient PM2.5 reduces global and regional life expectancy. Environmental Science & Technology Letters 5 (9):546–51. doi:10.1021/acs.estlett.8b00360.
  • Behera, D, and T. Balamugesh. 2005. Indoor air pollution as a risk factor for lung cancer in women. Journal of the Association of Physicians of India 53:190–2.
  • Bilsback, K. R., J. Dahlke, K. M. Fedak, N. Good, A. Hecobian, P. Herckes, C. L’Orange, J. Mehaffy, A. Sullivan, J. Tryner, et al. 2019. A laboratory assessment of 120 air pollutant emissions from biomass and fossil fuel cookstoves. Environmental Science & Technology 53 (12):7114–25. doi:10.1021/acs.est.8b07019.
  • Bilsback, K. R., S. R. Eilenberg, N. Good, L. Heck, M. Johnson, J. K. Kodros, E. M. Lipsky, C. L’Orange, J. R. Pierce, A. L. Robinson, et al. 2018. The firepower sweep test: a novel approach to cookstove laboratory testing. Indoor Air 28 (6):936–49. doi:10.1111/ina.12497.
  • Bonjour, S., H. Adair-Rohani, J. Wolf, N. G. Bruce, S. Mehta, A. Pruss-Ustun, M. Lahiff, E. A. Rehfuess, V. Mishra, and K. R. Smith. 2013. Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environmental Health Perspectives 121 (7):784–90. doi:10.1289/ehp.1205987.
  • Brenner, D. R., R. J. Hung, M. S. Tsao, F. A. Shepherd, M. R. Johnston, S. Narod, W. Rubenstein, and J. R. McLaughlin. 2010. Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors. BMC Cancer 10:285–93. doi:10.1186/1471-2407-10-285.
  • Brown, A. S., R. E. Yardley, P. G. Quincey, and D. M. Butterfield. 2006. Studies of the effect of humidity and other factors on some different filter materials used for gravimetric measurements of ambient particulate matter. Atmospheric Environment 40 (25):4670–8. doi:10.1016/j.atmosenv.2006.04.028.
  • Bruce, N., D. Pope, E. Rehfuess, K. Balakrishnan, H. Adair-Rohani, and C. Dora. 2015. WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure-risk functions. Atmospheric Environment 106:451–7. doi:10.1016/j.atmosenv.2014.08.064.
  • Champion, W. M., S. H. Warren, I. M. Kooter, W. Preston, Q. T. Krantz, D. M. DeMarini, and J. J. Jetter. 2020. Mutagenicity- and pollutant-emission factors of pellet-fueled gasifier cookstoves: comparison with other combustion sources. Science of the Total Environment 739 (139488):1–25. doi:10.1016/j.scitotenv.2020.139488.
  • Chow, J. C., J. P. Engelbrecht, N. C. G. Freeman, J. H. Hashim, M. Jantunen, J. Michaud, S. S. Tejada, J. G. Watson, F. Wei, W. E. Wilson, et al. 2002. Chapter one: exposure measurements. Chemosphere 49 (9):873–901. doi:10.1016/S0045-6535(02)00233-3.
  • Chow, J. C., J. G. Watson, D. H. Lowenthal, and K. L. Magliano. 2005. Loss of PM2.5 nitrate from filter samples in central California. Journal of the Air & Waste Management Association 55 (8):1158–68. doi:10.1080/10473289.2005.10464704.
  • Clark, M. L., J. L. Peel, K. Balakrishnan, P. N. Breysse, S. N. Chillrud, L. P. Naeher, C. E. Rodes, A. F. Vette, and J. M. Balbus. 2013. Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environmental Health Perspectives 121 (10):1120–8.
  • Clean Cooking Alliance. 2015. Five years of impact 2010–2015. Accessed December 15, 2022. https://cleancooking.org/wp-content/uploads/2021/06/406-1.pdf.
  • Coffey, E. R., D. Muvandimwe, Y. Hagar, C. Wiedinmyer, E. Kanyomse, R. Piedrahita, K. L. Dickinson, A. Oduro, and M. P. Hannigan. 2017. New emission factors and efficiencies from in-field measurements of traditional and improved cookstoves and their potential implications. Environmental Science & Technology 51 (21):12508–17. doi:10.1021/acs.est.7b02436.
  • Coutant, R. W., L. Brown, J. C. Chuang, R. M. Riggin, and R. G. Lewis. 1988. Phase distribution and artifact formation in ambient air sampling for polynuclear aromatic hydrocarbons. Atmospheric Environment 22 (2):403–9. doi:10.1016/0004-6981(88)90046-7.
  • Deng, M., S. Zhang, M. Shan, J. Li, J. Baumgartner, E. Carter, and X. Yang. 2018. The impact of cookstove operation on PM2.5 and CO emissions: a comparison of laboratory and field measurements. Environmental Pollution 243 (Pt B):1087–1095.
  • Dillner, A. M., C. H. Phuah, and J. R. Turner. 2009. Effects of post-sampling conditions on ambient carbon aerosol filter measurements. Atmospheric Environment 43 (37):5937–43. doi:10.1016/j.atmosenv.2009.08.009.
  • Dockery, D. W., C. A. Pope 3rd, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr, and F. E. Speizer. 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329 (24):1753–9.
  • Du, W., X. Zhu, Y. Chen, W. Liu, W. Wang, G. Shen, S. Tao, and J. J. Jetter. 2018. Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Environmental Pollution 242 (Pt B):1587–97. doi:10.1016/j.envpol.2018.07.121.
  • Du, Y., X. Xu, M. Chu, Y. Guo, and J. Wang. 2016. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease 8 (1):E8–19.
  • Holme, J. A., B. C. Brinchmann, and M. Refsnes. 2019. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health 18 (1):74–93.
  • ISO (International Organization for Standardization). 2018. ISO 19867-1:2018 clean cookstoves and clean cooking solutions – harmonized laboratory test protocols – Part 1: standard test sequence for emissions and performance, safety and durability. Accessed December 15, 2022. https://www.iso.org/standard/66519.html.
  • Johnson, M. A, and R. A. Chiang. 2015. Quantitative stove use and ventilation guidance for behavior change strategies. Journal of Health Communication 20 (Suppl 1):6–9. doi:10.1080/10810730.2014.994246.
  • Kakareka, S. V., T. I. Kukharchyk, and V. S. Khomich. 2005. Study of PAH emission from the solid fuels combustion in residential furnaces. Environmental Pollution 133 (2):383–7.
  • Karimi, P., K. O. Peters, K. Bidad, and P. T. Strickland. 2015. Polycyclic aromatic hydrocarbons and childhood asthma. European Journal of Epidemiology 30 (2):91–101. doi:10.1007/s10654-015-9988-6.
  • Kelp, M. M., A. P. Grieshop, C. C. O. Reynolds, J. Baumgartner, G. Jain, K. Sethuraman, and J. D. Marshall. 2018. Real-time indoor measurement of health and climate-relevant air pollution concentrations during a carbon-finance-approved cookstove intervention in rural India. Development Engineering 3:125–32. doi:10.1016/j.deveng.2018.05.001.
  • Kim, D., Z. Chen, L.-F. Zhou, and S.-X. Huang. 2018. Air pollutants and early origins of respiratory diseases. Chronic Diseases and Translational Medicine 4 (2):75–94. doi:10.1016/j.cdtm.2018.03.003.
  • Kim, K. H., S. A. Jahan, and E. Kabir. 2011. A review of diseases associated with household air pollution due to the use of biomass fuels. Journal of Hazardous Materials 192 (2):425–31. doi:10.1016/j.jhazmat.2011.05.087.
  • Kloster, G., R. Niehaus, and H. Stania. 1992. Storage stability of polycyclic aromatic hydrocarbons collected from ambient air using solid supports. Fresenius’ Journal of Analytical Chemistry 342 (4–5):405–8. doi:10.1007/BF00322195.
  • Kuo, C. Y., Y. W. Cheng, C. Y. Chen, and H. Lee. 1998. Correlation between the amounts of polycyclic aromatic hydrocarbons and mutagenicity of airborne particulate samples from Taichung City, Taiwan. Environmental Research 78 (1):43–9. doi:10.1006/enrs.1998.3838.
  • Lai, A., M. Shan, M. Deng, E. Carter, X. Yang, J. Baumgartner, and J. Schauer. 2019. Differences in chemical composition of PM2.5 emissions from traditional versus advanced combustion (semi-gasifier) solid fuel stoves. Chemosphere 233:852–61. doi:10.1016/j.chemosphere.2019.06.013.
  • Lim, S., S. T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, K. G. Andrews, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380 (9859):2224–60. doi:10.1016/S0140-6736(12)61766-8.
  • Malm, W. C., B. A. Schichtel, and M. L. Pitchford. 2011. Uncertainties in PM2.5 gravimetric and speciation measurements and what we can learn from them. Journal of the Air & Waste Management Association 61 (11):1131–49. doi:10.1080/10473289.2011.603998.
  • Mortimer, K., C. B. Ndamala, A. W. Naunje, J. Malava, C. Katundu, W. Weston, D. Havens, D. Pope, N. G. Bruce, M. Nyirenda, et al. 2017. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. Lancet 389 (10065):167–75. doi:10.1016/S0140-6736(16)32507-7.
  • Mu, L., L. Liu, R. Niu, B. Zhao, J. Shi, Y. Li, M. Swanson, W. Scheider, J. Su, S.-C. Chang, et al. 2013. Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes & Control 24 (3):439–50. doi:10.1007/s10552-012-0130-8.
  • Mutlu, E., S. H. Warren, S. M. Ebersviller, I. M. Kooter, J. E. Schmid, J. A. Dye, W. P. Linak, M. I. Gilmour, J. J. Jetter, M. Higuchi, et al. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environmental Health Perspectives 124 (7):974–82.
  • Okello, G., G. Devereux, and S. Semple. 2018. Women and girls in resource poor countries experience much greater exposure to household air pollutants than men: results from Uganda and Ethiopia. Environment International 119:429–37. doi:10.1016/j.envint.2018.07.002.
  • Padula, A. M., E. M. Noth, S. K. Hammond, F. W. Lurmann, W. Yang, I. B. Tager, and G. M. Shaw. 2014. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environmental Research 135:221–6. doi:10.1016/j.envres.2014.09.014.
  • Pope, D., N. Bruce, M. Dherani, K. Jagoe, and E. Rehfuess. 2017. Real-life effectiveness of ‘improved’ stoves and clean fuels in reducing PM2.5 and CO: systematic review and meta-analysis. Environment International 101:7–18. doi:10.1016/j.envint.2017.01.012.
  • Pope, D. P., V. Mishra, L. Thompson, A. R. Siddiqui, A. A. Rehfuess, M. Weber, and N. G. Bruce. 2010. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiologic Reviews 32:70–81. doi:10.1093/epirev/mxq005.
  • Reece, S. M., A. Sinha, and A. P. Grieshop. 2017. Primary and photochemically aged aerosol emissions from biomass cookstoves: chemical and physical characterization. Environmental Science & Technology 51 (16):9379–90. doi:10.1021/acs.est.7b01881.
  • Roden, C. A., T. C. Bond, S. Conway, A. B. O. Pinel, N. MacCarty, and D. Still. 2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmospheric Environment 43 (6):1170–81. doi:10.1016/j.atmosenv.2008.05.041.
  • Rogalsky, D. K., P. Mendola, T. A. Metts, and W. J. Martin. 2014. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels. Environmental Health Perspectives 122 (8):806–10.
  • Rosenthal, J. 2015. The real challenge for cookstoves and health: more evidence. EcoHealth 12 (1):8–11. doi:10.1007/s10393-014-0997-9.
  • Rudan, I., K. L. O’Brien, H. Nair, L. Liu, E. Theodoratou, S. Qazi, I. Lukšić, C. L. Fischer Walker, R. E. Black, and H. Campbell; Child Health Epidemiology Reference Group (CHERG). 2013. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. Journal of Global Health 3 (1):010401.
  • Sapkota, A., V. Gajalakshmi, D. H. Jetly, S. Roychowdhury, R. P. Dikshit, P. Brennan, M. Hashibe, and P. Boffetta. 2008. Indoor air pollution from solid fuels and risk of hypopharyngeal/laryngeal and lung cancers: a multicentric case–control study from India. International Journal of Epidemiology 37 (2):321–8. doi:10.1093/ije/dym261.
  • Shen, G. F. 2017. Mutagenicity of particle emissions from solid fuel cookstoves: a literature review and research perspective. Environmental Research 156:761–9.
  • Shen, G., W. Preston, S. M. Ebersviller, C. Williams, J. W. Faircloth, J. J. Jetter, and M. D. Hays. 2017. Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves. Energy & Fuels 31 (3):3081–90. doi:10.1021/acs.energyfuels.6b02641.
  • Smith, K. R., N. Bruce, K. Balakrishnan, H. Adair-Rohani, J. Balmes, Z. Chafe, M. Dherani, H. D. Hosgood, S. Mehta, D. Pope; et al., HAP CRA Risk Expert Group. 2014. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annual Review of Public Health 35:185–206. doi:10.1146/annurev-publhealth-032013-182356.
  • Smith, K. R., J. P. McCracken, M. W. Weber, A. Hubbard, A. Jenny, L. M. Thompson, J. Balmes, A. Diaz, B. Arana, and N. Bruce. 2011. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. Lancet 378 (9804):1717–26. doi:10.1016/S0140-6736(11)60921-5.
  • Subramanian, R., A. Y. Khlystov, J. C. Cabada, and A. L. Robinson. 2004. Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology 38 (Suppl 1):27–48. doi:10.1080/02786820390229354.
  • Sverdrup, G. M., B. E. Buxton, J. C. Chuang, and G. S. Casuccio. 1990. Determination of optimal storage conditions for particle samples. Environmental Science & Technology 24 (8):1186–95. doi:10.1021/es00078a006.
  • Topinka, J., A. Milcova, J. Schmuczerova, M. Mazac, M. Pechout, and M. Vojtisek-Lom. 2012. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines. Toxicology Letters 212 (1):11–7.
  • Tryner, J., B. D. Willson, and A. J. Marchese. 2014. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves. Energy for Sustainable Development 23:99–109. doi:10.1016/j.esd.2014.07.009.
  • Turpin, B. J., P. Saxena, and E. Andrews. 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34 (18):2983–3013. doi:10.1016/S1352-2310(99)00501-4.
  • U.S. EPA Substance Details-Polycyclic Organic Matter-16-PAH. Accessed December 15, 2022. https://sor.epa.gov/sor_internet/registry/substreg/substance/details.do?displayPopup=&id=6012.
  • Uzoigwe, J. C., T. Prum, E. Bresnahan, and M. Garelnabi. 2013. The emerging role of outdoor and indoor air pollution in cardiovascular disease. North American Journal of Medical Sciences 5 (8):445–53.
  • Van Tran, V., D. Park, and Y. C. Lee. 2020. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International Journal of Environmental Research and Public Health 17 (8):2927–54. doi:10.3390/ijerph17082927.
  • Velali, E., E. Papachristou, A. Pantazaki, A. Besis, C. Samara, C. Labrianidis, and T. Lialiaris. 2018. In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources – role of PAHs. Environmental Pollution 243 (Pt B):1166–76. doi:10.1016/j.envpol.2018.09.075.
  • Wang, Z., Y. Zheng, B. Zhao, Y. Zhang, Z. Liu, J. Xu, Y. Chen, Z. Yang, F. Wang, H. Wang, et al. 2015. Human metabolic responses to chronic environmental polycyclic aromatic hydrocarbon exposure by a metabolomic approach. Journal of Proteome Research 14 (6):2583–93. doi:10.1021/acs.jproteome.5b00134.
  • Weinstein, J. R., R. Asteria-Peñaloza, A. Diaz-Artiga, G. Davila, S. K. Hammond, I. T. Ryde, J. N. Meyer, N. Benowitz, and L. M. Thompson. 2017. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels. International Journal of Hygiene and Environmental Health 220 (4):726–35. doi:10.1016/j.ijheh.2017.03.002.
  • Weyant, C. L., P. Chen, A. Vaidya, C. Li, Q. Zhang, R. Thompson, J. Ellis, Y. Chen, S. Kang, G. R. Shrestha, et al. 2019. Emission measurements from traditional biomass cookstoves in South Asia and Tibet. Environmental Science & Technology 53 (6):3306–14. doi:10.1021/acs.est.8b05199.
  • WHO (World Health Organization). 2014. WHO guidelines for indoor air quality: household fuel combustion. Accessed December 15, 2022. https://www.who.int/publications-detail-redirect/9789241548885.
  • WHO (World Health Organization). 2018. International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans – household use of solid fuels and high-temperature frying. Accessed December 15, 2022. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono95.pdf.
  • Xing, Y. F., Y. H. Xu, M. H. Shi, and Y. X. Lian. 2016. The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease 8 (1):E69–74.
  • Ye, W., E. Saikawa, A. Avramov, S. Cho, and R. Chartier. 2020. Household air pollution and personal exposure from burning firewood and yak dung in summer in the eastern Tibetan Plateau. Environmental Pollution 263 (Pt B):114531–41. doi:10.1016/j.envpol.2020.114531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.