252
Views
0
CrossRef citations to date
0
Altmetric
Materials

Degradation of Methylene Blue Using Fly Ash as a Heterogeneous Fenton Catalyst

, , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 2099-2112 | Received 06 Jun 2022, Accepted 01 Dec 2022, Published online: 10 Dec 2022

References

  • Ahmed, Y., Z. Yaakob, and P. Akhtar. 2016. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catalysis Science & Technology 6 (4):1222–32. doi:10.1039/C5CY01494H.
  • Basturk, E., and M. Karatas. 2015. Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry 299:67–72. doi:10.1016/j.jphotochem.2014.11.003.
  • Chen, S., and D-y Du. 2014. Degradation of n-butyl xanthate using fly ash as heterogeneous Fenton-like catalyst. Journal of Central South University 21 (4):1448–52. doi:10.1007/s11771-014-2084-3.
  • Collins, P. F., H. Diehl, and G. F. Smith. 1959. 2,4,6-Tripyridyl-s-triazine as reagent for iron. Determination of iron in limestone, silicates, and refractories. Analytical Chemistry 31 (11):1862–7. doi:10.1021/ac60155a056.
  • Dao, D., N. Nguyen, L. Thanh Son, H. Nguyen, H. Hoang, K. Truong, D. Trung, and H. Yamada. 2016. Iron-modified fly ash as heterogeneous Fenton-like catalyst for decolorization of Reactive Blue 182 dye. In Fly ash: Properties, analysis and performance, ed. J. Parker, 237–51. New York: Nova Science Publishers Inc.
  • Daud, N. K., and B. H. Hameed. 2010. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. Journal of Hazardous Materials 176 (1–3):938–44. doi:10.1016/j.jhazmat.2009.11.130.
  • Dutta, S., B. Gupta, S. K. Srivastava, and A. K. Gupta. 2021. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances 2 (14):4497–531. doi:10.1039/D1MA00354B.
  • Feng, J., X. Hu, and P. L. Yue. 2006. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research 40 (4):641–6. doi:10.1016/j.watres.2005.12.021.
  • Hashemian, S., M. Tabatabaee, and M. Gafari. 2013. Fenton oxidation of methyl violet in aqueous solution. Journal of Chemistry 2013:1–6. doi:10.1155/2013/509097.
  • Hassan, H., and B. Hameed. 2011. Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal 171 (3):912–8. doi:10.1016/j.cej.2011.04.040.
  • Hermassi, M., C. Valderrama, N. Moreno, O. Font, X. Querol, N. H. Batis, and J. L. Cortina. 2017. Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. Journal of Environmental Chemical Engineering 5 (1):160–9. doi:10.1016/j.jece.2016.11.027.
  • Holkar, C. R., A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit. 2016. A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management 182:351–66.
  • Hsieh, S., and P.-Y. Lin. 2012. FePt nanoparticles as heterogeneous Fenton-like catalysts for hydrogen peroxide decomposition and the decolorization of methylene blue. Journal of Nanoparticle Research 14 (6):956. doi:10.1007/s11051-012-0956-8.
  • Hussain, S., E. Aneggi, and D. Goi. 2021. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: A review. Environmental Chemistry Letters 19 (3):2405–24. doi:10.1007/s10311-021-01185-z.
  • Im, J.-K., J. Yoon, N. Her, J. Han, K.-D. Zoh, and Y. Yoon. 2015. Sonocatalytic-TiO2 nanotube, Fenton, and CCl4 reactions for enhanced oxidation, and their applications to acetaminophen and naproxen degradation. Separation and Purification Technology 141:1–9. doi:10.1016/j.seppur.2014.11.021.
  • Katheresan, V., J. Kansedo, and S. Y. Lau. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering 6 (4):4676–97. doi:10.1016/j.jece.2018.06.060.
  • Khan, I., K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L. A. Shah, et al. 2022. Review on methylene blue: Its properties. Uses, Toxicity and Photodegradation. Water 14 (2):242–72.
  • Khataee, A., P. Gholami, and M. Sheydaei. 2016. Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: Effect of parameters and intermediate identification. Journal of the Taiwan Institute of Chemical Engineers 58 (C):366–73. doi:10.1016/j.jtice.2015.06.015.
  • Kosmulski, M. 2020. The pH dependent surface charging and points of zero charge. VIII. Update. Advances in Colloid and Interface Science 275:102064. doi:10.1016/j.cis.2019.102064.
  • Kumar, V., N. Pandey, S. Dharmadhikari, and P. Ghosh. 2020. Degradation of mixed dye via heterogeneous Fenton process: Studies of calcination, toxicity evaluation, and kinetics. Water Environment Research 92 (2):211–21.
  • Li, K., Y. Zhao, C. Song, and X. Guo. 2017. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis. Applied Surface Science 425:526–34. doi:10.1016/j.apsusc.2017.07.041.
  • Liang, X., Y. Zhong, S. Zhu, L. Ma, P. Yuan, J. Zhu, H. He, and Z. Jiang. 2012. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. Journal of Hazardous Materials 199–200:247–54.
  • Masto, R. E., R. Verma, L. C. Ram, V. A. Selvi, J. George, and A. K. Sinha. 2015. Phosphorus removal using lignite fly ash. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (7):735–41. doi:10.1080/15567036.2011.592927.
  • Mesquita, A. M., I. R. Guimarães, G. M. Castro, M. A. Gonçalves, T. C. Ramalho, and M. C. Guerreiro. 2016. Boron as a promoter in the goethite (α-FeOOH) phase: Organic compound degradation by Fenton reaction. Applied Catalysis B: Environmental 192:286–95. doi:10.1016/j.apcatb.2016.03.051.
  • Nadeem, N., M. Zahid, A. Tabasum, A. Mansha, A. Jilani, I. A. Bhatti, and H. N. Bhatti. 2020. Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Materials Research Express 7 (1):015519. doi:10.1088/2053-1591/ab66ee.
  • Pang, Y. L., S. Bhatia, and A. Z. Abdullah. 2011. Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution. Separation and Purification Technology 77 (3):331–8. doi:10.1016/j.seppur.2010.12.023.
  • Qin, Q., Y. Liu, X. Li, T. Sun, and Y. Xu. 2018. Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Advances 8 (2):1071–7.
  • Rahim Pouran, S., A. A. Abdul Raman, W. Daud, and M. S. Shafeeyan. 2015. Effects of niobium and molybdenum impregnation on adsorption capacity and Fenton catalytic activity of magnetite. RSC Advances 5 (106):87535–49.
  • Ramirez, J. H., F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, and L. M. Madeira. 2007. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental 75 (3–4):312–23. doi:10.1016/j.apcatb.2007.05.003.
  • Shahwan, T., S. Abu Sirriah, M. Nairat, E. Boyacı, A. E. Eroğlu, T. B. Scott, and K. R. Hallam. 2011. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal 172 (1):258–66. doi:10.1016/j.cej.2011.05.103.
  • Thawornpan, P., W. Jumpathong, S. Thanapongpichat, N. Tansila, A. Win Tun, L. de Jong, and H. Buncherd. 2021a. Magnetic fraction of fly ash as a low-cost magnetic adsorbent for selective capture of phosphoproteins. Analytical Letters 54 (11):1826–39. doi:10.1080/00032719.2020.1825467.
  • Thawornpan, P., S. Thanapongpichat, A. W. Tun, W. Jumpathong, L. d. Jong, and H. Buncherd. 2021b. Isolation of nucleic acids using fly ash as a low-cost adsorbent. Analytical Letters 54 (12):2037–50. doi:10.1080/00032719.2020.1835938.
  • Thawornpan, P., S. Thanapongpichat, A. W. Tun, A. Phongdara, L. de Jong, and H. Buncherd. 2018. Fly-ash as a low-cost material for isolation of phosphoproteins. Chemosphere 213:124–32.
  • Wang, Q., S. Tian, and P. Ning. 2014. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Industrial & Engineering Chemistry Research 53 (2):643–9. doi:10.1021/ie403402q.
  • Watwe, V. S., S. D. Kulkarni, and P. S. Kulkarni. 2021. Cr(VI)-mediated homogeneous Fenton oxidation for decolorization of methylene blue dye: Sludge free and pertinent to a wide pH range. ACS Omega 6 (41):27288–96.
  • Weeraphan, C., P. Thawornpan, S. Thanapongpichat, K. Srinoun, A. Win Tun, C. Srisomsap, J. Svasti, and H. Buncherd. 2021. Application of the Magnetic fraction of fly ash as a low-cost heterogeneous Fenton catalyst for degrading ethidium bromide. Analytical Letters 55 (6):965–79.
  • Wu, J., G. Lin, P. Li, W. Yin, X. Wang, and B. Yang. 2013. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2. Water Science and Technology 67 (3):572–8.
  • Yang, S.-T., W. Zhang, J. Xie, R. Liao, X. Zhang, B. Yu, R. Wu, X. Liu, H. Li, and Z. Guo. 2015. Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment. RSC Advances 5 (7):5458–63. doi:10.1039/C4RA10207J.
  • Yaseen, D. A., and M. Scholz. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology 16 (2):1193–226. doi:10.1007/s13762-018-2130-z.
  • Zhang, J., T. Yao, C. Guan, N. Zhang, H. Zhang, X. Zhang, and J. Wu. 2017. One-pot preparation of ternary reduced graphene oxide nanosheets/Fe2O3/polypyrrole hydrogels as efficient Fenton catalysts. Journal of Colloid and Interface Science 505:130–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.