108
Views
1
CrossRef citations to date
0
Altmetric
Food Analysis

Characterization of Congou Black Tea by an Electronic Nose with Grey Wolf Optimization (GWO) and Chemometrics

, ORCID Icon, , , &
Pages 2123-2136 | Received 15 Sep 2022, Accepted 03 Dec 2022, Published online: 15 Dec 2022

References

  • Arslan, M., M. Zareef, H. E. Tahir, J. Zhang, W. Ahmad, A. Rakha, J. Shi, X. Zou, and M. R. Khan. 2022. Discrimination of basmati rice adulteration using colorimetric sensor array system. Food Control. 132:108513. doi:10.1016/j.foodcont.2021.108513.
  • Banerjee, M. B., R. B. Roy, B. Tudu, R. Bandyopadhyay, and N. Bhattacharyya. 2019. Black tea classification employing feature fusion of E-Nose and E-Tongue responses. Journal of Food Engineering 244:55–63. doi:10.1016/j.jfoodeng.2018.09.022.
  • Bhattacharyya, N., S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, and M. Bhuyan. 2007. Monitoring of black tea fermentation process using electronic nose. Journal of Food Engineering 80 (4):1146–56. doi:10.1016/j.jfoodeng.2006.09.006.
  • Chen, H.-Z., M. Zhang, and Z. Guo. 2019. Discrimination of fresh-cut broccoli freshness by volatiles using electronic nose and gas chromatography-mass spectrometry. Postharvest Biology and Technology 148:168–75. doi:10.1016/j.postharvbio.2018.10.019.
  • Dai, Y., R. Zhi, L. Zhao, H. Gao, B. Shi, and H. Wang. 2015. Longjing tea quality classification by fusion of features collected from E-nose. Chemometrics and Intelligent Laboratory Systems 144:63–70. doi:10.1016/j.chemolab.2015.03.010.
  • Ezhilan, M., N. Nesakumar, K. J. Babu, C. S. Srinandan, and J. B. B. Rayappan. 2019. Freshness assessment of broccoli using electronic nose. Measurement 145:735–43. doi:10.1016/j.measurement.2019.06.005.
  • Gao, Q., P. Wang, T. Niu, D. He, M. Wang, H. Yang, and X. Zhao. 2022. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging. Food Chemistry 370:131013. doi:10.1016/j.foodchem.2021.131013.
  • Guo, X., C.-T. Ho, X. Wan, H. Zhu, Q. Liu, and Z. Wen. 2021. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry 341 (Pt 1):128230. doi:10.1016/j.foodchem.2020.128230.
  • Huo, D., Y. Wu, M. Yang, H. Fa, X. Luo, and C. Hou. 2014. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays. Food Chemistry 145:639–45. doi:10.1016/j.foodchem.2013.07.142.
  • Jiang, H., T. Liu, and Q. Chen. 2020b. Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system. Infrared Physics & Technology 109:103423. doi:10.1016/j.infrared.2020.103423.
  • Jiang, H., J. Wang, W. Mao, and Q. Chen. 2022. Determination of aflatoxin B1 in wheat based on colourimetric sensor array technology: Optimization of sensor features and model parameters to improve the model generalization performance. Microchemical Journal 175:107173. doi:10.1016/j.microc.2022.107173.
  • Jiang, H., W. Xu, and Q. Chen. 2020a. Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis. Food Chemistry 319:126584. doi:10.1016/j.foodchem.2020.126584.
  • Karunathilaka, S. R., Z. Ellsworth, and B. J. Yakes. 2021. Detection of decomposition in mahi-mahi, croaker, red snapper, and weakfish using an electronic-nose sensor and chemometric modeling. Journal of Food Science 86 (9):4148–58. doi:10.1111/1750-3841.15878.
  • Li, L., M. Li, Q. Cui, Y. Liu, Y. Chen, Y. Wang, Z. Zhang, Q. Chen, and J. Ning. 2022b. Rapid monitoring of black tea fermentation quality based on a solution-phase sensor array combined with UV-visible spectroscopy. Food Chemistry 377:131974. doi:10.1016/j.foodchem.2021.131974.
  • Li, P., Z. Niu, K. Shao, and Z. Wu. 2021. Quantitative analysis of fish meal freshness using an electronic nose combined with chemometric methods. Measurement 179:109484. doi:10.1016/j.measurement.2021.109484.
  • Liu, C., Z. Chu, S. Weng, G. Zhu, K. Han, Z. Zhang, L. Huang, Z. Zhu, and S. Zheng. 2022. Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network. Food Chemistry 385:132651. doi:10.1016/j.foodchem.2022.132651.
  • Li, L., Y. Wang, Q. Cui, Y. Liu, J. Ning, and Z. Zhang. 2022a. Qualitative and quantitative quality evaluation of black tea fermentation through noncontact chemical imaging. Journal of Food Composition and Analysis 106:104300. doi:10.1016/j.jfca.2021.104300.
  • Lu, X., J. Wang, G. Lu, B. Lin, M. Chang, and W. He. 2019. Quality level identification of West Lake Longjing green tea using electronic nose. Sensors and Actuators B: Chemical 301:127056. doi:10.1016/j.snb.2019.127056.
  • Niu, Y., R. Wang, Z. Xiao, J. Zhu, X. Sun, and P. Wang. 2019. Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose. Food Research International (Ottawa, Ont.) 120:92–101. doi:10.1016/j.foodres.2019.01.064.
  • Niu, Y., Z. Yao, Z. Xiao, G. Zhu, J. Zhu, and J. Chen. 2018. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Research International (Ottawa, Ont.) 113:102–14. doi:10.1016/j.foodres.2018.01.018.
  • Rahi, S., H. Mobli, B. Jamshidi, A. Azizi, and M. Sharifi. 2021. Achieving a robust Vis/NIR model for microbial contamination detection of Persian leek by spectral analysis based on genetic, iPLS algorithms and VIP scores. Postharvest Biology and Technology 175:111413. doi:10.1016/j.postharvbio.2020.111413.
  • Ren, G., N. Gan, Y. Song, J. Ning, and Z. Zhang. 2021b. Evaluating Congou black tea quality using a lab-made computer vision system coupled with morphological features and chemometrics. Microchemical Journal 160:105600. doi:10.1016/j.microc.2020.105600.
  • Ren, G., Y. Liu, J. Ning, and Z. Zhang. 2021a. Assessing black tea quality based on visible–near infrared spectra and kernel-based methods. Journal of Food Composition and Analysis 98:103810. doi:10.1016/j.jfca.2021.103810.
  • Ren, G., Y. Liu, J. Ning, and Z. Zhang. 2021d. Hyperspectral imaging for discrimination of Keemun black tea quality categories: Multivariate calibration analysis and data fusion. International Journal of Food Science & Technology 56 (6):2580–7. doi:10.1111/ijfs.14624.
  • Ren, G., T. Li, Y. Wei, J. Ning, and Z. Zhang. 2021e. Estimation of Congou black tea quality by an electronic tongue technology combined with multivariate analysis. Microchemical Journal 163:105899. doi:10.1016/j.microc.2020.105899.
  • Ren, G., J. Ning, and Z. Zhang. 2020b. Intelligent assessment of tea quality employing visible-near infrared spectra combined with a hybrid variable selection strategy. Microchemical Journal 157:105085. doi:10.1016/j.microc.2020.105085.
  • Ren, G., J. Ning, and Z. Zhang. 2021c. Multi-variable selection strategy based on near-infrared spectra for the rapid description of Dianhong black tea quality. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 245:118918. doi:10.1016/j.saa.2020.118918.
  • Ren, G., Y. Sun, M. Li, J. Ning, and Z. Zhang. 2020a. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): Near-infrared spectroscopy and evolutionary algorithms. Journal of the Science of Food and Agriculture 100 (10):3950–9. doi:10.1002/jsfa.10439.
  • Sharma, P., A. Ghosh, B. Tudu, S. Sabhapondit, B. D. Baruah, P. Tamuly, N. Bhattacharyya, and R. Bandyopadhyay. 2015. Monitoring the fermentation process of black tea using QCM sensor based electronic nose. Sensors and Actuators B: Chemical 219:146–57. doi:10.1016/j.snb.2015.05.013.
  • Shi, Y., F. Gong, M. Wang, J. Liu, Y. Wu, and H. Men. 2019. A deep feature mining method of electronic nose sensor data for identifying beer olfactory information. Journal of Food Engineering 263:437–45. doi:10.1016/j.jfoodeng.2019.07.023.
  • Teye, E., C. L. Y. Amuah, T. McGrath, and C. Elliott. 2019. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 217:147–54. doi:10.1016/j.saa.2019.03.085.
  • Too, J., and A. R. Abdullah. 2021. Opposition based competitive grey wolf optimizer for EMG feature selection. Evolutionary Intelligence 14 (4):1691–705. doi:10.1007/s12065-020-00441-5.
  • Tozlu, B. H., and H. İ. Okumuş. 2018. A new approach to automation of black tea fermentation process with electronic nose. Automatika 59 (3-4):373–81. doi:10.1080/00051144.2018.1550164.
  • Tu, Q., X. Chen, and X. Liu. 2019. Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing 76:16–30. doi:10.1016/j.asoc.2018.11.047.
  • Wang, Y., Z. Ren, M. Li, W. Yuan, Z. Zhang, and J. Ning. 2022. pH indicator-based sensor array in combination with hyperspectral imaging for intelligent evaluation of withering degree during processing of black tea. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 271:120959. doi:10.1016/j.saa.2022.120959.
  • Wen, R., B. Kong, X. Yin, H. Zhang, and Q. Chen. 2022. Characterisation of flavour profile of beef jerky inoculated with different autochthonous lactic acid bacteria using electronic nose and gas chromatography–ion mobility spectrometry. Meat Science 183:108658. doi:10.1016/j.meatsci.2021.108658.
  • Wijaya, D. R., R. Sarno, and E. Zulaika. 2019. Noise filtering framework for electronic nose signals: An application for beef quality monitoring. Computers and Electronics in Agriculture 157:305–21. doi:10.1016/j.compag.2019.01.001.
  • Xu, M., J. Wang, and S. Gu. 2019b. Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy. Journal of Food Engineering 241:10–7. doi:10.1016/j.jfoodeng.2018.07.020.
  • Xu, M., J. Wang, and L. Zhu. 2019a. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chemistry 289:482–9.
  • Yuan, H., X. Chen, Y. Shao, Y. Cheng, Y. Yang, M. Zhang, J. Hua, J. Li, Y. Deng, J. Wang, et al. 2019. Quality evaluation of green and dark tea grade using electronic nose and multivariate statistical analysis. Journal of Food Science 84 (12):3411–7. doi:10.1111/1750-3841.14917.
  • Yuan, D., J. Jiang, X. Qi, Z. Xie, and G. Zhang. 2020. Selecting key wavelengths of hyperspectral imagine for nondestructive classification of moldy peanuts using ensemble classifier. Infrared Physics & Technology 111:103518. doi:10.1016/j.infrared.2020.103518.
  • Zhang, X., Q. Lin, W. Mao, S. Liu, Z. Dou, and G. Liu. 2021. Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization. Applied Soft Computing 101:107061. doi:10.1016/j.asoc.2020.107061.
  • Zhu, J., F. Chen, L. Wang, Y. Niu, and Z. Xiao. 2017. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose. Food Chemistry 221:1484–90. doi:10.1016/j.foodchem.2016.11.002.
  • Zhu, D., X. Ren, L. Wei, X. Cao, Y. Ge, H. Liu, and J. Li. 2020. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Scientia Horticulturae 260:108879. doi:10.1016/j.scienta.2019.108879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.