126
Views
0
CrossRef citations to date
0
Altmetric
Voltammetry

Determination of Terbinafine at a Boron-Doped Diamond (BDD) Electrode Modified with Polypyrrole and γ-Cyclodextrin by Square Wave Voltammetry (SWV)

Pages 2275-2290 | Received 04 Sep 2022, Accepted 29 Dec 2022, Published online: 10 Jan 2023

References

  • Annibaldi, V., G. M. Hendy, and C. B. Breslin. 2019. Studies on the formation and properties of polypyrrole doped with ionised β-cyclodextrins: Influence of the anionic pendants. Journal of Solid State Electrochemistry 23 (2):615–26. doi:10.1007/s10008-018-04171-8.
  • Annibaldi, V., and C. B. Breslin. 2019. Electrochemistry of viologens at polypyrrole doped with sulfonated β-cyclodextrin. Journal of Electroanalytical Chemistry 832:399–407. doi:10.1016/j.jelechem.2018.11.025.
  • Arjomandi, J., and R. Holze. 2007a. Spectroelectrochemistry of conducting polypyrrole and poly(pyrolle-cyclodextrin) prepared in aqueous and nonaqueous solvents. Journal of Solid State Electrochemistry 11 (8):1093–100. doi:10.1007/s10008-006-0243-7.
  • Arjomandi, J., and R. Holze. 2007b. In situ characterization of N-methylpyrrole and (N-methylpyrrole-cyclodextrin) polymers on gold electrodes in aqueous and nanoqueous solution. Synthetic Metals 157 (24):1021–8. doi:10.1016/j.synthmet.2007.10.009.
  • Arranz, A., S. F. de Betono, J. M. Moreda, A. Cid, and J. F. Arranz. 1997. Voltammetric behaviour of the antimycotic terbinafine at the hanging drop mercury electrode. Analytica Chimica Acta 351 (1–3):97–103. doi:10.1016/S0003-2670(97)00350-4.
  • Atta, N. F., A. Galal, and D. M. El-Said. 2019. Novel design of a layered electrochemical dopamine sensor in real samples based on gold nanoparticles/β-cyclodextrin/nafion-modified gold electrode. ACS Omega 4 (19):17947–55. doi:10.1021/acsomega.9b01222.
  • Bobacka, J., A. Ivaska, and A. Lewenstam. 2003. Potentiometric ion sensors based on conducting polymers. Electroanalysis 15 (5–6):366–74. doi:10.1002/elan.200390042.
  • Bouchta, D., N. Izaoumen, H. Zejli, M. El Kaoutit, and K. R. Temsamani. 2005. Electroanalytical properties of a novel PPY/γ-cyclodextrin coated electrode. Analytical Letters 38 (6):1019–36. doi:10.1081/AL-200054090.
  • Dodziuk, H. 2006. Cyclodextrins and their complexes: Chemistry, analytical methods, applications, chichester. UK: J. Wiley and Sons.
  • Einaga, Y., R. Sato, H. Olivia, D. Shin, T. A. Ivandini, and A. Fujishima. 2004. Modified diamond electrodes for electrolysis and electroanalysis applications. Electrochimica Acta 49 (22–23):3989–95. doi:10.1016/j.electacta.2003.12.064.
  • El-Shal, M. A., A. K. Attia, and S. A. Abdulla. 2013. β-cyclodextrin modified carbon paste electrode for the determination of gemifloxacin and nadifloxacin. J. Adv. Sci. Res 4:25–30.
  • Farrington, A. M., and J. M. Slater. 1997. Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrro1e) films. Electroanalysis 9 (11):843–7. doi:10.1002/elan.1140091108.
  • Faridbod, F., M. R. Ganjali, and P. Norouzi. 2013. Potentiometric PVC membrane sensor for the determination of terbinafine. International Journal of Electrochemical Science. 8:6107–17.
  • Ferancova, A., and J. Labuda. 2001. Cyclodextrins as electrode modifiers. Fresenius’ Journal of Analytical Chemistry 370 (1):1–10. doi:10.1007/s002160100752.
  • Ferancova, A., E. Korgová, T. Buzinkaiová, W. Kutner, I. Štěpánek, and J. Labuda. 2001. Electrochemical sensor using screen-printed carbon electrode assemblies modified with the β-cyclodextrin or carboxymethylated β-cyclodextrin polymer films for determination of trycyclic antidepressive drugs. Analytica Chimica Acta. 447 (1–2):47–54. doi:10.1016/S0003-2670(01)01308-3.
  • Florea, M., and C. M. Monciu. 2008. Spectrophotometric determination of terbinafine through ion-pair complex formation with methyl orange. Farmacia 56:393–401.
  • Fritea, L. 2015. Novel cyclodextrin modified electrodes for pharmaceutical and biomedical applications. Materials. Université Grenoble Alpes; Université de médecine et de pharmacie Iuliu Hatieganu (Cluj-Napoca, Roumanie), English. NNT: 2015GREAI032. Tel-01216123.
  • Galus, Z. 1994. Fundamentals of electrochemical analysis. New York, USA: Ellis Horwood Press New York.
  • Gao, Y. S., J. K. Xu, L. M. Lu, L. P. Wu, K. X. Zhang, T. Nie, X. F. Zhu, and Y. Wu. 2014. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosensors and Bioelectronics 62:261–7. doi:10.1016/j.bios.2014.06.044.
  • Gholivand, M. B., and M. Amiri. 2013. Highly sensitive and selective determination methyldopa in the presence of ascorbic acid using OPPy/TY/Au modified electrode. Journal of Electroanalytical Chemistry 694:56–60. doi:10.1016/j.jelechem.2013.01.014.
  • Gupta, A. K., J. E. Ryder, K. Nicol, and E. A. Cooper. 2003. Superficial fungal infections: An update on pityriasisversicolor, seborrheic dermatitis, tineacapitis, and onychomycosis. Clinics in Dermatology 21 (5):417–25. doi:10.1016/j.clindermatol.2003.08.003.
  • Hamilton, A., and C. B. Breslin. 2014. The development of a novel urea sensor using polypyrrole. Electrochimica Acta 145:19–26. doi:10.1016/j.electacta.2014.08.052.
  • Harley, C. C., A. D. Rooney, and C. B. Breslin. 2010. The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins. Sensors and Actuators B: Chemical 150 (2):498–504. doi:10.1016/j.snb.2010.09.012.
  • Harley, C. C., V. Annibaldi, T. Yu, and C. B. Breslin. 2019. The selective electrochemical sensing of dopamine at a polypyrrole film doped with an anionic β-cyclodextrin. Journal of Electroanalytical Chemistry 855:113614. doi:10.1016/j.jelechem.2019.113614.
  • Hsueh, C., and A. Brajter-Toth. 1994. Electrochemical preparation and analytical applications of ultrathin overoxidized polypyrrole films. Analytical Chemistry 66 (15):2458–64. doi:10.1021/ac00087a009.
  • Hu, Y. F., Z. H. Zhang, H. B. Zhang, L. J. Luo, and S. Z. Yao. 2011. Electrochemical determination of l-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol–gel film. Talanta 84 (2):305–13. doi:10.1016/j.talanta.2011.01.010.
  • Ibrahim, M. S., I. S. Shehatta, and A. A. Al-Nayeli. 2002. Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. Journal of Pharmaceutical and Biomedical Analysis. 28 (2):217–25. doi:10.1016/S0731-7085(01)00624-0.
  • Izaoumen, N., D. Bouchta, H. Zejli, M. El Kaoutit, A. M. Stalcup, and K. R. Temsamani. 2005a. Electrosynthesis and analytical performances of functionalized poly(pyrrole/β-cyclodextrin) films. Talanta 66 (1):111–7. doi:10.1016/j.talanta.2004.10.003.
  • Izaoumen, N., D. Bouchta, H. Zejli, M. El Kaoutit, and K. R. Temsamani. 2005b. The electrochemical behavior of neurotransmitters at a poly (pyrrole‐β‐cyclodextrin) modified glassy carbon electrode. Analytical Letters 38 (12):1869–85. doi:10.1080/00032710500230855.
  • Jiang, X., and X. Lin. 2005. Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Analytica Chimica Acta 537 (1–2):145–51. doi:10.1016/j.aca.2005.01.049.
  • Kutner, W.,W. Storck, andK. Doblhofer. 1992. Preparation and properties of insoluble films of cyclodextrin condensation polymers. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 13 (3):257–65. doi:10.1007/BF01042784.
  • Lee, J., and S. Park. 2000. Electrochemistry of conductive polymers XXIV. Polypyrrole films grown at electrodes modified with β-cyclodextrin molecular templates. Journal of the Electrochemical Society 147 (11):4189–95. doi:10.1149/1.1394039.
  • Li, Y., P. Wang, L. Wang, and X. Lin. 2007. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosensors & Bioelectronics 22 (12):3120–5. doi:10.1016/j.bios.2007.02.001.
  • Lian, W. J., J. D. Huang, J. H. Yu, X. M. Zhang, Q. Lin, X. R. He, X. R. Xing, and S. Liu. 2012. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 26 (2):620–7. doi:10.1016/j.foodcont.2012.02.023.
  • Lomillo, M. A. A., O. D. Renedo, and M. J. A. Martínez. 2005. Optimization of a cyclodextrin-based sensor for rifampicin monitoring. Electrochimica Acta 50:1807–11.
  • Lomillo, M. A. A., J. M. Kauffmann, and M. J. A. Martinez. 2003. HRP-based biosensor for monitoring rifampicin. Biosensors & Bioelectronics 18 (9):1165–71.
  • Lopez-Lorente, A. I., J. Izquierdo, C. Kranz, and B. Mizaikof. 2016. Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vibrational Spectroscopy 86:1–10.
  • Lourencao, B. C., R. F. Brocenschi, R. A. Medeiros, O. Fatibello-Filho, and R. C. Rocha-Filho. 2020. Analytical applications of electrochemically pretreated boron-doped diamond electrodes. ChemElectroChem 7:1219–311.
  • Lukášek, J., M. Řezanková, I. Stibor, and M. Řezanka. 2018. Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers. Journal of Inclusion Phenomena and Macrocyclic Chemistry 92 (3–4):339–46. doi:10.1007/s10847-018-0854-5.
  • Majidi, M. R., A. Jouyban, and K. Asadpour-Zeynali. 2006. Voltammetric behavior and determination o isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode. Journal of Electroanalytical Chemistry 589 (1):32–7. doi:10.1016/j.jelechem.2006.01.016.
  • Meloun, M.,. S. Bordovská, and L. Galla. 2010. The thermodynamic dissociation constants of clotrimazole, terbinafine hcl, acetylsalicylic acid, salicylic acid, and galanthamine by the nonlinear regression of multiwavelength spectrophotometric pH-titration data. SRX Pharmacology 2010:1–14. doi:10.3814/2010/527013.
  • Mielech-Łukasiewicz, K., and A. Dąbrowska. 2014. Comparison of boron-doped diamond and glassy carbon electrodes for determination of terbinafine in pharmaceuticals using differential pulse and square wave voltammetry. Analytical Letters 47 (10):1697–711. doi:10.1080/00032719.2014.883518.
  • Mielech-Łukasiewicz, K., and A. Bliźniukiewicz. 2018. Electrochemical oxidation of methylparaben at overoxidized polypyrrole film modified a boron-doped diamond electrode. Journal of the Iranian Chemical Society 15 (12):2703–11. doi:10.1007/s13738-018-1458-0.
  • Mielech-Łukasiewicz, K., and M. Domalewska. 2021. Electrochemical determination of ciclopirox olamine by using boron-doped diamond electrode modified with overoxidized polypyrrole film. Electrocatalysis 12 (3):283–94. doi:10.1007/s12678-021-00651-0.
  • Mostany, J., and B.R. Scharifker. 1997. Impedance spectroscopy of undoped, doped and overoxidized polypyrrole films. . Synthetic Metals 87: 179–85.
  • Muzyka, K., J. Sun, T. H. Fereja, Y. Lan, W. Zhang, and G. Xu. 2019. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Analytical Methods 11:397–414.
  • Ozkorucuklu, S. P., L. Ozcan, Y. Sahin, and G. Alsancak. 2011. Electroanalytical determination of some sulphonamides on overoxidized polypyrrole electrodes. Australian Journal of Chemistry 64 (7):965–72. doi:10.1071/CH10481.
  • Palanisamy, S., K. Thangavelu, S. Chen, V. Velusamy, M. Chang, T. Chen, F. M. A. Al-Hemaid, M. A. Ali, and S. K. Ramaraj. 2017. Synthesis and characterization of polypyrrole decorated grapheme/β-cyclodextrin composite for low level electrochemical detection of mercury(II) in water. Sensors and Actuators B: Chemical 243:888–94. doi:10.1016/j.snb.2016.12.068.
  • Radi, A., and S. Eissa. 2010a. Electrochemistry of cyclodextrin inclusion complexes of pharmaceutical compounds. The Open Chemical and Biomedical Methods Journal 3 (1):74–85. doi:10.2174/1875038901003010074.
  • Radi, A., and S. Eissa. 2010b. Electrochemical study of gliclazide and its complexation with β-cyclodextrin. Electroanalysis 22 (24):2991–6. doi:10.1002/elan.201000416.
  • Reddy, T. M., K. Balaji, and S. J. Reddy. 2007. Voltammetric behavior of some fluorinated quinolone antibacterial agents and their differential pulse voltammetric determination in drug formulations and urine samples using a β-cyclodextrin-modified carbon-paste electrode. Journal of Analytical Chemistry 62 (2):168–75. doi:10.1134/S1061934807020128.
  • Ries, M. A. E., M. F. A. Ghany, L. A. Hussin, F. M. El-Anwar, and A. M. Mohamed. 2013. Voltammetric behavior of ketoconazole and its determination in cosmetic preparation using a β-cyclodextrin modified glassy carbon electrode. Bulletin of Faculty of Pharmacy 51 (1):49–55. doi:10.1016/j.bfopcu.2011.09.001.
  • Roy, N., Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, et al. 2016. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification. Scientific Reports 6:38010–9. doi:10.1038/srep38010.
  • Sabour, S., H. Eldessouky, G. G. Mohamed, and Y. Salah. 2018. Potentiometric determination of terbinafine hydrochloride antifungal drug in pharmaceutical and biological fluids using ion selective electrodes. Research Journal of Environmental Sciences 5:80–92.
  • Shang, F., L. Zhou, K. A. Mahmoud, S. Hrapovic, Y. Liu, H. A. Moynihan, J. D. Glennon, and J. H. T. Luong. 2009. Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-β-cyclodextrin-doped poly (N-acetyltyramine) and polypyrrole composite film. Analytical Chemistry 81 (10):4089–98. doi:10.1021/ac900368m.
  • Shi, W., C. Liu, Y. Song, N. Lin, S. Zhou, and X. Cai. 2012. An ascorbic acid amperometric sensor using overoxidized polypyrrole and palladium nanoparticles composites. Biosensors & Bioelectronics 38 (1):100–6. doi:10.1016/j.bios.2012.05.004.
  • Shishkanova, T. V., N. Habanová, M. Řezanka, G. Broncová, P. Fitl, M. Vrňata, and P. Matějka. 2020. Molecular recognition of phenylalanine enantiomers onto a solid surface modified with electropolymerized pyrrole-β-cyclodextrin conjugate. Electroanalysis 32 (4):767–74. doi:10.1002/elan.201900615.
  • Sousa, C. P., F. W. P. Ribeiro, T. M. B. F. Oliveira, G. R. Salazar-Banda, P. de Lima-Neto, S. Morais, and A. N. Correia. 2019. Electroanalysis of pharmaceuticals on boron-doped diamond electrodes: A review. ChemElectroChem 6 (9):2350–78. doi:10.1002/celc.201801742.
  • Szunerits, S., and R. Boukherroub. 2008. Different strategies for functionalization of diamond surfaces. Journal of Solid State Electrochemistry 12 (10):1205–18. doi:10.1007/s10008-007-0473-3.
  • Tamer, U., Ç. Kanbeş, and N. Ertaş. 2009. Branched fibers of conducting polypyrrole: Synthesis and characterization. International Journal of Polymer Analysis and Characterization 14 (3):259–70. doi:10.1080/10236660802663522.
  • Temsamani, K. R., H. B. Mark, W. Kutner, and A. M. Stalcup. 2002. A simple one-step electrosynthesis of poly(pyrrole-sulfated β-cyclodextrin) films. Journal of Solid State Electrochemistry 6 (6):391–5. doi:10.1007/s100080100248.
  • Ukraintsev, E., A. Kromka, W. Janssen, K. Haenen, and B. Rezek. 2013. Controlling physical and chemical bonding of polypyrrole to boron doped diamond by surface termination. International Journal of Electrochemical Science 8:17–26.
  • Wajs, E., N. Fernandez, and A. Fragoso. 2016. Supramolecular biosensors based on electropolymerized pyrrole-cyclodextrin modified surfaces for antibody detection. The Analyst 141 (11):3274–9. doi:10.1039/c6an00532b.
  • Wang, J. 1988. Electroanalytical techniques in clinical chemistry and laboratory medicine. New York: Wiley-VCH.
  • Wang, M., M. R. Das, V. G. Praig, F. LeNormand, M. Li, R. Boukherroub, and S. Szunerits. 2008a. Wet-chemical approach for the halogenations of hydrogenated boron-doped diamond electrodes. Chemical Communications 47 (47):6294–6. doi:10.1039/b810975c.
  • Wang, C., Y. Mao, D. Wang, G. Yang, Q. Qu, and X. Hu. 2008b. Voltammetric determination of terbinafine in biological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubes composite film. Bioelectrochemistry (Amsterdam, Netherlands) 72 (1):107–15. doi:10.1016/j.bioelechem.2007.11.014.
  • Yang, N., S. Yu, J. V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G. M. Swain, and X. Jiang. 2019. Conductive diamond: Synthesis, properties, and electrochemical applications. Chemical Society Reviews 48 (1):157–204.
  • Yang, Y., C. Lei, Z. Liu, Y. Liu, G. Shen, and R. Yu. 2004. Highly selective dopamine determination by using carboxymethylated β-cyclodextrin polymer film modified electrode. Analytical Letters 37 (11):2267–82. doi:10.1081/AL-200028072.
  • Yu, Y., Y. Xin, Y. H. Feng, L. Z. Min, L. Y. Li, S. G. Li, and Y. R. Qin. 2005. Electrochemical sensor for cinchonine based on a competitive host–guest complexation. Analytica Chimica Acta. 528 (2):135–42. doi:10.1016/j.aca.2004.10.041.
  • Zheng, L., S. Wu, X. Lin, L. Nie, L. Rui, and X. Yang. 2002. Preparation and characterization of a novel β-cyclodextrin modified poly(N-acetylaniline) film. Macromolecules 35 (16):6174–7. doi:10.1021/ma011663j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.