218
Views
0
CrossRef citations to date
0
Altmetric
Mass Spectrometry

Monitoring Conformational Changes of Lysozyme–Polyelectrolyte Complexes Using Trapped Ion Mobility-Mass Spectrometry (IM-MS)

ORCID Icon
Pages 1377-1398 | Received 26 Dec 2022, Accepted 24 Jan 2023, Published online: 06 Feb 2023

References

  • Abraham, M. J., T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. doi:10.1016/j.softx.2015.06.001.
  • Abramsson, M. L., C. Sahin, J. T. S. Hopper, R. M. M. Branca, J. Danielsson, M. Xu, S. A. Chandler, N. Österlund, L. L. Ilag, A. Leppert, et al. 2021. Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry. JACS Au 1 (12):2385–2393. doi:10.1021/jacsau.1c00458.
  • Andersson, M., and P. Hansson. 2018. Binding of lysozyme to spherical poly(styrenesulfonate) gels. Gels 4 (1):9. doi:10.3390/gels4010009.
  • Angel, L. A. 2011. Study of metal ion labeling of the conformational and charge states of lysozyme by ion mobility mass spectrometry. European Journal of Mass Spectrometry (Chichester, England) 17 (3):207–15. doi:10.1255/ejms.1133.
  • Bakhtiari, M, and L. Konermann. 2019. Protein ions generated by native electrospray ionization: Comparison of gas phase, solution, and crystal structures. The Journal of Physical Chemistry, B 123 (8):1784–1796. doi:10.1021/acs.jpcb.8b12173.
  • Berman, H., K. Henrick, and H. Nakamura. 2003. Announcing the worldwide protein data bank. Nature Structural Biology 10 (12):980. doi:10.1038/nsb1203-980.
  • Bleiholder, C. 2016. Towards measuring ion mobilities in non-stationary gases and non-uniform and dynamic electric fields (I). Transport equation. International Journal of Mass Spectrometry 399–400:1–9. doi:10.1016/j.ijms.2016.01.003.
  • Carrivain, P., A. Cournac, C. Lavelle, A. Lesne, J. Mozziconacci, F. Paillusson, L. Signon, J. M. Victor, and M. Barbi. 2012. Electrostatics of DNA compaction in viruses, bacteria and eukaryotes: Functional insights and evolutionary perspective. Soft Matter 8 (36):9285–301. doi:10.1039/c2sm25789k.
  • Cousin, F., J. Gummel, D. Clemens, I. Grillo, and F. Boué. 2010. Multiple scale reorganization of electrostatic complexes of poly (styrenesulfonate) and lysozyme. Langmuir : The ACS Journal of Surfaces and Colloids 26 (10):7078–85. doi:10.1021/la904398z.
  • Cousin, F., J. Gummel, D. Ung, and F. Boué. 2005. Polyelectrolyte − protein complexes: Structure and conformation of each specie revealed by SANS. Langmuir : The ACS Journal of Surfaces and Colloids 21 (21):9675–88. doi:10.1021/la0510174.
  • Cousin, F., J. Gummel, S. Combet, and F. Boue. 2011. The model Lysozyme-PSSNa system for electrostatic complexation: Similarities and differences with complex coacervation. Advances in Colloid and İnterface Science 167 (1–2):71–84. doi:10.1016/j.cis.2011.05.007.
  • De La Mora, J. F., S. Ude, and B. A. Thomson. 2006. The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase. Biotechnology Journal 1 (9):988–97. doi:10.1002/biot.200600070.
  • Decroo, C., E. Colson, M. Demeyer, V. Lemaur, G. Caulier, I. Eeckhaut, J. Cornil, P. Flammang, and P. Gerbaux. 2017. Tackling saponin diversity in marine animals by mass spectrometry: Data acquisition and integration. Analytical and Bioanalytical Chemistry 409 (12):3115–3126. doi:10.1007/s00216-017-0252-7.
  • Ewing, S. A., M. T. Donor, J. W. Wilson, and J. S. Prell. 2017. Collidoscope: An improved tool for computing collisional cross-sections with the trajectory method. Journal of the American Society for Mass Spectrometry 28 (4):587–596. doi:10.1007/s13361-017-1594-2.
  • Fenn, L. S., and J. A. McLean. 2008. Biomolecular structural separations by ion mobility–mass spectrometry. Analytical and Bioanalytical Chemistry 391 (3):905–9. doi:10.1007/s00216-008-1951-x.
  • Gabelica, V., A. A. Shvartsburg, C. Afonso, P. Barran, J. L. Benesch, C. Bleiholder, M. T. Bowers, A. Bilbao, M. F. Bush, J. L. Campbell, et al. 2019. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrometry Reviews 38 (3):291–320. doi:10.1002/mas.21585.
  • Gao, J. Y., P. L. Dubin, and B. B. Muhoberac. 1998. Capillary electrophoresis and dynamic light scattering studies of structure and binding characteristics of protein − polyelectrolyte complexes. The Journal of Physical Chemistry B 102 (28):5529–5535. doi:10.1021/jp980507k.
  • Gao, S., A. Holkar, and S. Srivastava. 2019. Protein–polyelectrolyte complexes and micellar assemblies. Polymers 11 (7):1097. doi:10.3390/polym11071097.
  • Goth, M., F. Lermyte, X. J. Schmitt, S. Warnke, G. von Helden, F. Sobott, and K. Pagel. 2016. Gas-phase microsolvation of ubiquitin: İnvestigation of crown ether complexation sites using ion mobility-mass spectrometry. The Analyst 141 (19):5502–10. doi:10.1039/c6an01377e.
  • Greenfield, N. J. 1996. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Analytical Biochemistry 235 (1):1–10. doi:10.1006/abio.1996.0084.
  • Grünewald, F., R. Alessandri, P. C. Kroon, L. Monticelli, P. C. T. Souza, and S. J. Marrink. 2022. Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials. Nature Communications 13 (1):1–12. doi:10.1038/s41467-021-27627-4.
  • Gummel, J., F. Boue, D. Clemens, and F. Cousin. 2008. Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes. Soft Matter 4 (8):1653–1664. doi:10.1039/b803773f.
  • Gummel, J., F. Cousin, and F. Boué. 2008. Structure transition in PSS/lysozyme complexes: A chain-conformation-driven process, as directly seen by small angle neutron scattering. Macromolecules 41 (8):2898–2907. doi:10.1021/ma702242d.
  • Hall, Z., H. Hernandez, J. A. Marsh, S. A. Teichmann, and C. V. Robinson. 2013. The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure (London, England : 1993) 21 (8):1325–37. doi:10.1016/j.str.2013.06.004.
  • Jurneczko, E, and P. E. Barran. 2011. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. The Analyst 136 (1):20–8. doi:10.1039/C0AN00373E.
  • Kabsch, W., and C. Sander. 1983. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 22 (12):2577–637. doi:10.1002/bip.360221211.
  • Khristenko, N., J. Amato, S. Livet, B. Pagano, A. Randazzo, and V. Gabelica. 2019. Native ıon mobility mass spectrometry: When gas-phase ıon structures depend on the electrospray charging process. Journal of the American Society for Mass Spectrometry 30 (6):1069–81. doi:10.1007/s13361-019-02152-3.
  • Konermann, L., H. Metwally, R. G. McAllister, and V. Popa. 2018. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods (San Diego, Calif.) 144:104–12. doi:10.1016/j.ymeth.2018.04.010.
  • Lindhoud, S., R. de Vries, R. Schweins, M. A. C. Stuart, and W. Norde. 2009. Salt-induced release of lipase from polyelectrolyte complex micelles. Soft Matter 5 (1):242–50. doi:10.1039/B811640G.
  • Lloyd Williams, O. H., and N. J. Rijs. 2021. Reaction monitoring and structural characterisation of coordination driven self-assembled systems by ıon mobility-mass spectrometry. Frontiers in Chemistry 9:682743. doi:10.3389/fchem.2021.682743.
  • Lobanov, M., Yu, N. S. Bogatyreva, and O. V. Galzitskaya. 2008. Radius of gyration as an indicator of protein structure compactness. Molecular Biology 42 (4):623–8. doi:10.1134/S0026893308040195.
  • Mahmood, M. I., A. B. Poma, and K. I. Okazaki. 2021. Optimizing Gō-MARTINI coarse-grained model for F-BAR protein on lipid membrane. Frontiers in Molecular Biosciences 8:619381 doi:10.3389/fmolb.2021.619381.
  • Manickam, D. S., A. M. Brynskikh, J. L. Kopanic, P. L. Sorgen, N. L. Klyachko, E. V. Batrakova, T. K. Bronich, and A. V. Kabanov. 2012. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. Journal of Controlled Release : Official Journal of the Controlled Release Society 162 (3):636–45. doi:10.1016/j.jconrel.2012.07.044.
  • Matsumura, M., and B. W. Matthews. 1991. [16] Stabilization of functional proteins by introduction of multiple disulfide bonds. Methods in Enzymology 202:336–56. doi:10.1016/0076-6879(91)02018-5.
  • Mazal, H, and G. Haran. 2019. Single-molecule FRET methods to study the dynamics of proteins at work. Current opinion in Biomedical Engineering 12:8–17. doi:10.1016/j.cobme.2019.08.007.
  • McDaniel, E. W., and E. A. Mason. 1973. Mobility and diffusion of ions in gases. United States: Wiley.
  • Michelmann, K., J. A. Silveira, M. E. Ridgeway, and M. A. Park. 2015. Fundamentals of trapped ion mobility spectrometry. Journal of the American Society for Mass Spectrometry 26 (1):14–24. doi:10.1007/s13361-014-0999-4.
  • Morawetz, H., and W. L. Hughes. Jr. 1952. The interaction of proteins with synthetic polyelectrolytes. I. Complexing of bovine serum albumin. The Journal of Physical Chemistry 56 (1):64–9. doi:10.1021/j150493a014.
  • Morsa, D., E. Hanozin, G. Eppe, L. Quinton, V. Gabelica, and E. Pauw. 2020. Effective temperature and structural rearrangement in trapped ıon mobility spectrometry. Analytical Chemistry 92 (6):4573–82. doi:10.1021/acs.analchem.9b05850.
  • Niu, S., B. C. Kim, C. A. Fierke, and B. T. Ruotolo. 2017. Ion mobility-mass spectrometry reveals evidence of specific complex formation between human histone deacetylase 8 and poly-r (C)-binding protein 1. International Journal of Mass Spectrometry 420:9–15. doi:10.1016/j.ijms.2016.12.017.
  • Over, B., P. Matsson, C. Tyrchan, P. Artursson, B. C. Doak, M. A. Foley, C. Hilgendorf, S. E. Johnston, M. D. Lee, R. J. Lewis, et al. 2016. Structural and conformational determinants of macrocycle cell permeability. Nature Chemical Biology 12 (12):1065–74. doi:10.1038/nchembio.2203.
  • Pandit, S., and S. Kundu. 2019. Optical activity of polyelectrolyte (PSS) - Protein (lysozyme) complexes. In Dae Solid State Physics Symposium 2018. doi:10.1063/1.5112876.
  • Pesce, F., and K. L. Larsen. 2021. Refining conformational ensembles of flexible proteins against small-angle x-ray scattering data. Biophysical Journal 120 (22):5124–5135. doi:10.1016/j.bpj.2021.10.003.
  • Picó, G. A., and N. W. Valetti. 2014. Complexes formation between proteins and polyelectrolytes and their application in the downstream processes of enzyme purification. In Polyelectrolytes, 245–73. Cham: Springer. doi:10.1007/978-3-319-01680-1_7.
  • Ridgeway, M. E., C. Bleiholder, M. Mann, and M. A. Park. 2019. Trends in trapped ion mobility – Mass spectrometry instrumentation. TrAC Trends in Analytical Chemistry 116:324–31. doi:10.1016/j.trac.2019.03.030.
  • Ridgeway, M. E., M. Lubeck, J. Jordens, M. Mann, and M. A. Park. 2018. Trapped ion mobility spectrometry: A short review. International Journal of Mass Spectrometry 425:22–35. doi:10.1016/j.ijms.2018.01.006.
  • Robinson, C. V., A. Sali, and W. Baumeister. 2007. The molecular sociology of the cell. Nature 450 (7172):973–82. doi:10.1038/nature06523.
  • Sahin, C., N. Osterlund, A. Leppert, J. Johansson, E. G. Marklund, J. L. P. Benesch, L. L. Ilag, T. M. Allison, and M. Landreh. 2021. Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chemical Communications (Cambridge, England) 57 (12):1450–53. doi:10.1039/d0cc08135c.
  • Salbo, R., M. F. Bush, H. Naver, I. Campuzano, C. V. Robinson, I. Pettersson, T. J. D. Jørgensen, and K. F. Haselmann. 2012. Traveling‐wave ion mobility mass spectrometry of protein complexes: Accurate calibrated collision cross‐sections of human insulin oligomers. Rapid communications in Mass Spectrometry : RCM 26 (10):1181–93. doi:10.1002/rcm.6211.
  • Schenk, E. R., R. Almeida, J. Miksovska, M. E. Ridgeway, M. A. Park, and F. Fernandez-Lima. 2015. Kinetic intermediates of holo-and apo-myoglobin studied using HDX-TIMS-MS and molecular dynamic simulations. Journal of the American Society for Mass Spectrometry 26 (4):555–63. doi:10.1007/s13361-014-1067-9.
  • Schmitt, C., and S. L. Turgeon. 2011. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and İnterface Science 167 (1–2):63–70. doi:10.1016/j.cis.2010.10.001.
  • Sedlák, E., D. Fedunová, V. Veselá, D. Sedláková, and M. Antalík. 2009. Polyanion hydrophobicity and protein basicity affect protein stability in protein − polyanion complexes. Biomacromolecules 10 (9):2533–8. doi:10.1021/bm900480t.
  • Sharon, M. 2010. How far can we go with structural mass spectrometry of protein complexes? Journal of the American Society for Mass Spectrometry 21 (4):487–500. doi:10.1016/j.jasms.2009.12.017.
  • Shvartsburg, A. A., S. Y. Noskov, R. W. Purves, and R. D. Smith. 2009. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry. Proceedings of the National Academy of Sciences of the United States of America 106 (16):6495–500. doi:10.1073/pnas.0812318106.
  • Silveira, J. A., K. Michelmann, M. E. Ridgeway, and M. A. Park. 2016. Fundamentals of trapped ion mobility spectrometry part II: Fluid dynamics. Journal of the American Society for Mass Spectrometry 27 (4):585–95. doi:10.1007/s13361-015-1310-z.
  • Sisley, E. K., E. Illes-Toth, and H. J. Cooper. 2020. In situ analysis of intact proteins by ion mobility mass spectrometry. TrAC Trends in Analytical Chemistry 124:115534. doi:10.1016/j.trac.2019.05.036.
  • Sivalingam, G. N., A. Cryar, M. A. Williams, B. Gooptu, and K. Thalassinos. 2018. Deconvolution of ion mobility mass spectrometry arrival time distributions using a genetic algorithm approach: Application to α1-antitrypsin peptide binding. International Journal of Mass Spectrometry 426:29–37. doi:10.1016/j.ijms.2018.01.008.
  • Souza, P. C. T., R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grünewald, I. Patmanidis, H. Abdizadeh, B. M. H. Bruininks, T. A. Wassenaar, et al. 2021. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods 18 (4):382–8. doi:10.1038/s41592-021-01098-3.
  • Spraggins, J. M., K. V. Djambazova, E. S. Rivera, L. G. Migas, E. K. Neumann, A. Fuetterer, J. Suetering, N. Goedecke, A. Ly, R. Van de Plas, et al. 2019. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Analytical Chemistry 91 (22):14552–60. doi:10.1021/acs.analchem.9b03612.
  • Štajner, L., J. Požar, and D. Kovačević. 2015. Complexation between lysozyme and sodium poly(styrenesulfonate): The effect of pH, reactant concentration and titration direction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 483:171–80. doi:10.1016/j.colsurfa.2015.03.034.
  • Stuchfield, D., and P. Barran. 2018. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Current Opinion in Chemical Biology 42:177–85. doi:10.1016/j.cbpa.2018.01.007.
  • Taverner, T., H. Hernández, M. Sharon, B. T. Ruotolo, D. Matak-Vinković, D. Devos, R. B. Russell, and C. V. Robinson. 2008. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Accounts of Chemical Research 41 (5):617–27. doi:10.1021/ar700218q.
  • Tose, L. V., P. Benigni, D. Leyva, A. Sundberg, C. E. Ramirez, M. E. Ridgeway, M. A. Park, W. Romao, R. Jaffe, and F. Fernandez-Lima. 2018. Coupling trapped ion mobility spectrometry to mass spectrometry: Trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry : RCM 32 (15):1287–95. doi:10.1002/rcm.8165.
  • Touw, W. G., C. Baakman, J. Black, T. A. H. Te Beek, E. Krieger, R. P. Joosten, and G. Vriend. 2015. A series of PDB-related databanks for everyday needs. Nucleic Acids Research 43 (Database issue):D364–8. doi:10.1093/nar/gku1028.
  • Uetrecht, C., R. J. Rose, E. van Duijn, K. Lorenzen, and A. J. R. Heck. 2010. Ion mobility mass spectrometry of proteins and protein assemblies. Chemical Society Reviews 39 (5):1633–55. doi:10.1039/B914002F.
  • Valentine, S. J., J. G. Anderson, A. D. Ellington, and D. E. Clemmer. 1997. Disulfide-intact and-reduced lysozyme in the gas phase: Conformations and pathways of folding and unfolding. The Journal of Physical Chemistry B 101 (19):3891–900. doi:10.1021/jp970217o.
  • Vasilopoulou, C. G., K. Sulek, A. David, Brunner, N. S. Meitei, U. Schweiger-Hufnagel, S. W. Meyer, A. Barsch, M. Mann, and F. Meier. 2020. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications 11 (1):1–11. doi:10.1038/s41467-019-14044-x.
  • Wang, H. Y., T. Y. Lee, Y. J. Tseng, T. P. Liu, K. Y. Huang, Y. T. Chang, C. H. Chen, and J. J. Lu. 2018. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PloS One 13 (3):e0194289. doi:10.1371/journal.pone.0194289.
  • Warnke, S., G. von Helden, and K. Pagel. 2013. Protein structure in the gas phase: The influence of side-chain microsolvation. Journal of the American Chemical Society 135 (4):1177–80. doi:10.1021/ja308528d.
  • Watson, J. D., R. A. Laskowski, and J. M. Thornton. 2005. Predicting protein function from sequence and structural data. Current Opinion in Structural Biology 15 (3):275–84. doi:10.1016/j.sbi.2005.04.003.
  • Wishart, D. S., B. D. Sykes, and F. M. Richards. 1991. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. Journal of Molecular Biology 222 (2):311–33. doi:10.1016/0022-2836(91)90214-Q.
  • Wu, F. G., Y. W. Jiang, H. Y. Sun, J. J. Luo, and Z. W. Yu. 2015. Complexation of lysozyme with sodium Poly(styrenesulfonate) via the two-state and non-two-state unfoldings of lysozyme. The Journal of Physical Chemistry. B 119 (45):14382–92. doi:10.1021/acs.jpcb.5b07277.
  • Xu, Y., M. Mazzawi, K. Chen, L. Sun, and P. L. Dubin. 2011. Protein purification by polyelectrolyte coacervation: İnfluence of protein charge anisotropy on selectivity. Biomacromolecules 12 (5):1512–22. doi:10.1021/bm101465y.
  • Zahler, C. T., and B. F. Shaw. 2019. What are we missing by not measuring the net charge of proteins? Chemistry (Weinheim an Der Bergstrasse, Germany) 25 (32):7581–90. doi:10.1002/chem.201900178.
  • Zhao, Y., J. Y. Yang, D. F. Thieker, Y. Xu, C. Zong, G. J. Boons, J. Liu, R. J. Woods, K. W. Moremen, and I. J. Amster. 2018. A traveling wave ıon mobility spectrometry (TWIMS) study of the Robo1-Heparan sulfate ınteraction. Journal of the American Society for Mass Spectrometry 29 (6):1153–65. doi:10.1007/s13361-018-1903-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.