172
Views
0
CrossRef citations to date
0
Altmetric
Immunoassay

Novel Ratiometric Electrochemical Biosensor for Determination of Cytokeratin 19 Fragment Antigen 21-1 (Cyfra-21-1) as a Lung Cancer Biomarker

, , , &
Pages 2708-2724 | Received 01 Jan 2023, Accepted 14 Feb 2023, Published online: 27 Feb 2023

References

  • Bao, J., C. J. Hou, Y. N. Zhao, X. T. Geng, M. Samalo, H. Yang, M. H. Bian, and D. Q. Huo. 2019. An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate. Talanta 196:329–36. doi:10.1016/j.talanta.2018.12.082.
  • Chen, Y., B. H. Song, X. S. Tang, L. Lu, and J. M. Xue. 2014. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10 (8):1536–43. doi:10.1002/smll.201302879.
  • Dohmoto, K., S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, et al. 2001. The role of caspase 3 in producing Cytokeratin 19 fragment (Cyfra21-1) in human lung cancer Cell lines. International Journal of Cancer 91 (4):468–73. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1082>3.0.CO;2-T.
  • Dworak, L., S. Roth, M. P. Scheffer, A. S. Frangakis, and J. Wachtveitl. 2018. A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue. Nanoscale 10 (4):2162–9. doi:10.1039/C7NR08287H.
  • Huang, K. J., L. Wang, Y. J. Liu, H. B. Wang, Y. M. Liu, and L. L. Wang. 2013. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochimica Acta 109:587–94. doi:10.1016/j.electacta.2013.07.168.
  • Huang, K.-J., Y.-J. Liu, Y.-M. Liu, and L.-L. Wang. 2014. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. Journal of Hazardous Materials 276:207–15. doi:10.1016/j.jhazmat.2014.05.037.
  • Jian, L. H., X. L. Wang, L. L. Hao, Y. J. Liu, H. X. Yang, X. K. Zheng, and W. S. Feng. 2021. Electrochemiluminescence immunosensor for cytokeratin fragment antigen 21-1 detection using electrochemically mediated atom transfer radical polymerization. Microchimica Acta 188 (4):115. doi:10.1007/s00604-020-04677-x.
  • Jafari, M., and M. Hasanzadeh. 2020. Non-invasive bioassay of Cytokeratin Fragment 21.1 (Cyfra 21.1) protein in human saliva samples using immunoreaction method: An efficient platform for early-stage diagnosis of oral cancer based on biomedicine. Biomedicine & Pharmacotherapy 131:110671–84. doi:10.1016/j.biopha.2020.110671.
  • Ke, R., X. M. Zhang, L. Wang, C. Y. Zhang, S. Y. Zhang, H. L. Niu, C. J. Mao, J. M. Song, B. K. Jin, and Y. P. Tian. 2015. Enhanced electrochemiluminescence of CdSe quantum dots coupled with MoS2-chitosan nanosheets. Journal of Solid State Electrochemistry 19 (6):1633–41. doi:10.1007/s10008-015-2793-z.
  • Kesavan, D., V. K. Mariappan, P. Pazhamalai, K. Krishnamoorthy, and S. J. Kim. 2021. Topochemically synthesized MoS2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors. Journal of Colloid and Interface Science 584:714–22. doi:10.1016/j.jcis.2020.09.088.
  • Kang, J., X. W. Li, J. Y. Geng, L. Han, J. L. Tang, Y. R. Jin, and Y. H. Zhang. 2012. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system. Food Chemistry 134 (4):2383–8. doi:10.1016/j.foodchem.2012.04.055.
  • Kumar, S., S. Kumar, S. Tiwari, S. Augustine, S. Srivastava, B. K. Yadav, and B. D. Malhotra. 2016a. Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sensors and Actuators B: Chemical 235:1–10. doi:10.1016/j.snb.2016.05.047.
  • Kumar, S., J. G. Sharma, S. Maji, and B. D. Malhotra. 2016b. A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Advances 6 (80):77037–46. doi:10.1039/C6RA07392A.
  • Kumar, S., S. Ashish, S. Kumar, S. Augustine, S. Yadav, B. K. Yadav, R. P. Chauhan, A. K. Dewan, B. D. Malhotra. 2018. Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. Biosensors & Bioelectronics 102:247–55. doi:10.1016/j.bios.2017.11.004.
  • Kumar, S., S. Panwar, S. Kumar, S. Augustine, and B. D. Malhotra. 2019. Biofunctionalized nanostructured yttria modified non-invasive impedometric biosensor for efficient detection of oral cancer. Nanomaterials 9 (9):1190–203. doi:10.3390/nano9091190.
  • Li, X. F., Y. W. Zhang, L. L. Hao, Y. J. Liu, X. Wang, H. X. Yang, and J. M. Kong. 2021. Ultrasensitive label-free detection for lung cancer CYFRA 21-1 DNA based on ring-opening polymerization. Talanta 223 (Pt 2):121730. doi:10.1016/j.talanta.2020.121730.
  • Li, Z. M., Y. C. Fu, W. H. Fang, and Y. B. Li. 2015. Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157:H7 with signal amplification using lectin. Sensors (Basel, Switzerland) 15 (8):19212–24. doi:10.3390/s150819212.
  • Lu, Z. S., X. J. Chen, and W. H. Hu. 2017. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors and Actuators B: Chemical 246:61–7. doi:10.1016/j.snb.2017.02.062.
  • Liu, Y. M., M. Zhou, Y. Y. Liu, K. J. Huang, J. T. Cao, J. J. Zhang, G. F. Shi, and Y. H. Chen. 2014. A novel sandwich electrochemiluminescence aptasensor based on molybdenum disulfide nanosheet-graphene composites and Au nanoparticles for signal amplification. Analytical Methods 6 (12):4152–7. doi:10.1039/C4AY00063C.
  • Liu, X., J. H. Pang, F. Xu, and X. M. Zhang. 2016. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Scientific Reports 6:31100–7. doi:10.1038/srep31100.
  • Lin, X., S. Xu, C. Wang, Z. Wang, and Y. Cui. 2014. Synthesis of thiosalicylic acid-capped CdTe quantum dots. RSC Advances 4 (10):4993–7. doi:10.1039/c3ra44307h.
  • Molina, R., S. Holdenrieder, J. M. Auge, A. Schalhorn, R. Hatz, and P. Stieber. 2010. Diagnostic relevance of circulating biomarkers in patients with lung cancer. Cancer Biomarkers: Section A of Disease Markers 6 (3-4):163–78. doi:10.3233/CBM-2009-0127.
  • Meng, X. Y., X. Chen, W. H. Wu, W. Zheng, H. H. Deng, L. Y. Xu, W. Chen, Z. L. Li, and H. P. Peng. 2019. Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots. Mikrochimica Acta 186 (12):855. doi:10.1007/s00604-019-3917-4.
  • Merki, D., S. Fierro, H. Vrubel, and X. L. Hu. 2011. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science 2 (7):1262–7. doi:10.1039/C1SC00117E.
  • Ni, S. N., L. C. Qiao, Z. P. Shen, Y. F. Gao, and G. Z. Liu. 2020. Physical absorption vs covalent binding of graphene oxide on glassy carbon electrode towards a robust aptasensor for ratiometric electrochemical detection of vascular endothelial growth factor (VEGF) in serum. Electrochimica Acta 331:135321–30. doi:10.1016/j.electacta.2019.135321.
  • Pujol, J. L., X. Quantin, W. Jacot, J. M. Boher, J. Grenier, and P. J. Lamy. 2003. Neuroendocrine and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 39 (2):131–8. doi:10.1016/s0169-5002(02)00513-5.
  • Pramanik, K., P. Sarkar, and D. Bhattacharyay. 2019. 3-Mercapto-propanoic acid modified cellulose filter paper for quick removal of arsenate from drinking water. International Journal of Biological Macromolecules 122:185–94. doi:10.1016/j.ijbiomac.2018.10.065.
  • Qin, W., H. Liu, and P. G. Sionnest. 2014. Small bright charged colloidal quantum dots. ACS Nano 8 (1):283–91. doi:10.1021/nn403893b.
  • Shamsipur, M., L. Farzin, M. A. Tabrizi, and M. Shanehsaz. 2016. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP. Materials Science & Engineering. C, Materials for Biological Applications 69:1354–60. doi:10.1016/j.msec.2016.08.038.
  • Shen, M., W. P. Jia, Y. J. You, Y. Hu, F. Li, S. D. Tian, J. Li, Y. X. Jin, and D. M. Han. 2013. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Research Letters 8 (1):253–9. doi:10.1186/1556-276X-8-253.
  • Shen, Y. Z., S. P. Liu, L. Wang, P. F. Yin, and Y. Q. He. 2014. Characterization of the interaction of a mono-6-thio-β-cyclodextrin-capped CdTe quantum dots-methylene blue/methylene green system with herring sperm DNA using a spectroscopic approach. Luminescence: The Journal of Biological and Chemical Luminescence 29 (7):884–92. doi:10.1002/bio.2637.
  • Su, S., H. Sun, F. Xu, L. Yuwen, and L. Wang. 2013. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 25 (11):2523–9. doi:10.1002/elan.201300332.
  • Su, S., Q. Hao, Z. Y. Yan, R. M. Dong, R. Yang, D. Zhu, J. Chao, Y. Zhou, and L. H. Wang. 2019. A molybdenum disulfide@methylene blue nanohybrid for electrochemical determination of microRNA-21, dopamine and uric acid. Mikrochimica Acta 186 (9):607–17. doi:10.1007/s00604-019-3678-0.
  • Sun, H. F., J. Chao, X. L. Zuo, S. Su, X. F. Liu, L. H. Yuwen, C. H. Fan, and L. H. Wang. 2014. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances 4 (52):27625–9. doi:10.1039/c4ra04046e.
  • Stephenson, T., Z. Li, B. Olsen, and D. Mitlin. 2014. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environmental Science 7 (1):209–31. doi:10.1039/C3EE42591F.
  • Stergiou, A., and N. Tagmatarchis. 2018. Molecular functionalization of two-dimensional MoS2 nanosheets. Chemistry – A European Journal 24 (69):18246–57. doi:10.1002/chem.201803066.
  • Shi, J. J., J. C. Zhu, M. Zhao, Y. Wang, P. Yang, and J. He. 2018. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS2-CdS:Mn nanocomposites by the formation of G-quadruplex structure. Talanta 183:237–44. doi:10.1016/j.talanta.2018.02.087.
  • Tiwari, S., P. K. Gupta, Y. Bagbi, T. Sarkar, and P. R. Solanki. 2017. L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosensors and Bioelectronics 89:1042–52. doi:10.1016/j.bios.2016.10.020.
  • Tang, W. W., C. L. Liu, L. Wang, X. S. Chen, M. Luo, W. L. Guo, S. W. Wang, and W. Lu. 2017. MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters 111 (15):153502–6. doi:10.1063/1.5001671.
  • Waki, K., T. Yamada, K. Yoshiyama, Y. Terazaki, S. Sakamoto, S. Matsueda, N. Komatsu, S. Sugawara, S. Takamori, K. Itoh, et al. 2014. PD-1 expression on peripheral blood T-cell subsets correlates with prognosis in non-small cell lung cancer. Cancer Science 105 (10):1229–35. doi:10.1111/cas.12502.
  • Wang, X., Y. W. Zhang, L. Y. Zhao, D. Z. Wang, H. X. Yang, and J. M. Kong. 2020. Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA21-1 DNA. Analytical and Bioanalytical Chemistry 412 (11):2413–21. doi:10.1007/s00216-020-02394-1.
  • Wang, H. Q., X. Gao, and Z. F. Ma. 2017. Multifunctional substrate of label-free electrochemical immunosensor for ultrasensitive detection of cytokeratins antigen 21-1. Scientific Reports 7 (1):1023. doi:10.1038/s41598-017-01250-0.
  • Wang, J. J., X. Hua, and B. K. Jin. 2022. Ultrasensitive detection of carcinoembryonic antigen by chitosan/polythiophene/CdTe electrochemical biosensor. ACS Omega.7 (49):45361–70. doi:10.1021/acsomega.2c05950.
  • Xu, R., Y. Du, L. Liu, D. W. Fan, X. Ren, X. J. Liu, Q. Wei, and H. X. Ju. 2021. Liposome encapsulated electron donor strategy for signal-on CYFRA 21-1 photoelectrochemical analysis. Microchimica Acta 188 (3):75. doi:10.1007/s00604-021-04721-4.
  • Xiong, E. H., X. H. Zhang, Y. Q. Liu, J. W. Zhou, P. Yu, X. Y. Li, and J. H. Chen. 2015a. Ultrasensitive electrochemical detection of nucleic acids based on the dual-signaling electrochemical ratiometric method and exonuclease III- assisted target recycling amplification strategy. Analytical Chemistry 87 (14):7291–6. doi:10.1021/acs.analchem.5b01402.
  • Xiong, E. H., L. Wu, J. W. Zhou, P. Yu, X. H. Zhang, and J. H. Chen. 2015b. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure. Analytica Chimica Acta 853:242–8.
  • Yang, F., J. Han, Y. Zhuo, Z. H. Yang, Y. Q. Chai, and R. Yuan. 2014. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosensors & Bioelectronics 55:360–5.
  • Yang, F., P. Liu, X. D. Meng, H. T. Lu, Y. Cao, W. H. Dai, C. T. Wang, and H. F. Dong. 2019. Functional MoS2 nanosheets for precursor and mature microRNA detection in living cells. Analytical and Bioanalytical Chemistry 411 (19):4559–67.
  • Yang, T., R. Z. Yu, Y. H. Yan, H. Zeng, S. Z. Luo, N. Z. Liu, A. F. Morrin, X. L. Luo, and W. H. Li. 2018. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sensors and Actuators B: Chemical 274:501–16. doi:10.1016/j.snb.2018.07.138.
  • Yang, S., D. Liu, Q. B. Meng, S. Wu, and X.-M. Song. 2018. Reduced graphene oxide-supported methylene blue nanocomposite as a glucose oxidase-mimetic for electrochemical glucose sensing. RSC Advances 8 (57):32565–73. doi:10.1039/C8RA06208K.
  • Yang, R., G. Jiang, H. Liu, L. He, F. Yu, L. Liu, L. Qu, and Y. Wu. 2021. A dual-model “on-super off” photoelectrochemical/ratiometric electrochemical biosensor for ultrasensitive and accurate detection of microRNA-224. Biosensors and Bioelectronics 188:113337–43. doi:10.1016/j.bios.2021.113337.
  • Zeng, Y., J. Bao, Y. N. Zhao, D. Q. Huo, M. Chen, M. Yang, H. B. Fa, and C. J. Hou. 2018a. A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode. Talanta 178:122–8. doi:10.1016/j.talanta.2017.09.020.
  • Zeng, Y., J. Bao, Y. N. Zhao, D. Q. Huo, M. Chen, Y. L. Qi, M. Yang, H. B. Fa, and C. J. Hou. 2018b. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry 120:183–9. doi:10.1016/j.bioelechem.2017.11.003.
  • Zhao, C. Q., H. Jin, R. J. Gui, and Z. H. Wang. 2017. Facile fabrication of dual-ratiometric electrochemical sensors based on a bare electrode for dual-signal sensing of analytes in electrolyte solution. Sensors and Actuators B: Chemical 242:71–8. doi:10.1016/j.snb.2016.11.036.
  • Zhang, F., M. M. Chen, H. Q. Zhang, H. Y. Xiong, W. Wen, X. H. Zhang, and S. F. Wang. 2017. Fluorescence suppression of MPA stabilized CdTe QDs for direct determination of propranolol. Analytical Methods 9 (6):929–36. doi:10.1039/C6AY02711C.
  • Zhang, R. F., Y. Li, J. Qi, and D. Q. Gao. 2014. Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Research Letters 9 (1):586–90. doi:10.1186/1556-276X-9-586.
  • Zhang, C., S. C. Xu, X. P. Zhang, D. D. Huang, R. L. Li, S. H. Zhao, and B. Wang. 2014. Electrochemical detection of specific DNA sequences related to bladder cancer on CdTe quantum dots modified glassy carbon electrode. Journal of Electroanalytical Chemistry 735:115–22. doi:10.1016/j.jelechem.2014.09.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.