100
Views
0
CrossRef citations to date
0
Altmetric
Chromatography

Liquid Chromatographic Separation of MM 302 Da Polycyclic Aromatic Hydrocarbons in Synthetic Mixtures Using Chiral Stationary Phase Material

, &
Pages 2822-2835 | Received 24 Jan 2023, Accepted 23 Feb 2023, Published online: 22 Mar 2023

References

  • Abdel-Shafy, H. I., and M. Mansour. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25 (1):107–23. doi:10.1016/j.ejpe.2015.03.011.
  • American Conference of Governmental Industrial Hygienists American Conference. 2014. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: ACGIH.
  • Andersson, J. T., and C. Achten. 2015. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyclic Aromatic Compounds 35 (2–4):330–354. doi:10.1080/10406638.2014.991042.
  • Baird, W. M., L. A. Hooven, B. Mahadevan, A. Luch, A. Seidel, and P. L. Iversen. 2002. Responses of human cells to PAH-induced DNA damage. Polycyclic Aromatic Compounds 22 (3):771–780. doi:10.1080/10406630290103924.
  • Croes, K., A. Steffens, D. H. Marchand, and L. R. Snyder. 2005. Relevance of pi-pi and dipole-dipole interactions for retention on cyano and phenyl columns in reversed-phase liquid chromatography. Journal of Chromatography A 1098 (1–2):123–130. doi:10.1016/j.chroma.2005.08.090.
  • Daicel Corporation. 2019. Chiral columns – polysaccharide columns. Accessed December 2019. https://chiraltech.com/chiral-columns/
  • Das, S. 2014. Microbiological biodegration and bioremediation. 1st ed. London; Waltham: Elsevier.
  • Diamante, G., G. Müller, N. Menjivar-Cervantes, E. Xu, D. Volz, A. Bainy, and D. Schlenk. 2017. Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. Aquatic Toxicology (Amsterdam, Netherlands) 189:77–86. doi:10.1016/j.aquatox.2017.05.013.
  • Durant, J. L., A. L. Lafleur, W. F. Busby, Jr., L. L. Donhoffner, B. W. Penman, and C. L. Crespi. 1999. Mutagenicity of C24H24 PAH in human cells expressing CYP1A1. Mutation Research 446 (1):1–14. doi:10.1016/s1383-5718(99)00135-7.
  • Hayes, H. V., W. B. Wilson, A. M. Santana, A. D. Campiglia, L. C. Sander, and S. A. Wise. 2019. Determination of molecular mass 302 polycyclic aromatic hydrocarbons in Standard Reference Material 1597a by reversed-phase liquid chromatography and constant energy synchronous fluorescence spectroscopy. Microchemical Journal 149:1–8. doi:10.1016/j.microc.2019.104061.
  • Hayes, H. V., W. Wilson, L. C. Sander, S. A. Wise, and A. D. Campiglia. 2018. Determination of polycyclic aromatic hydrocarbons with molecular mass 302 in Standard Reference Material 1597a by reversed phase liquid chromatography and stop-flow fluorescence detection. Analytical Methods 10:2668–75. doi:10.1039/C8AY00760H.
  • Hodgeson, J. W. 1990. Method 550.1—Determination of polycyclic aromatic hydrocarbons in drinking water. Cincinnati, OH: U.S. EPA.
  • Hodgeson, J. W. 1995. Method 525.2—Determination of organic compounds in drinking water by liquid-solid extraction and capillary column gas chromatography/mass spectrometry. Cincinnati, OH: U.S. EPA.
  • Ikai, T., and Y. Okamoto. 2009. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chemical Reviews 109 (11):6077–−6101. doi:10.1021/cr8005558.
  • Jinno, K., and K. Kawasaki. 1984. Correlation of the of the retention data of polyaromatic hydrocarbons obtained on various stationary phases used in normal- and reversed-phase liquid chromatography. Chromatographia 18:44–46. doi:10.1007/BF02279465.
  • Maletić, S. P., J. M. Beljin, S. D. Rončević, M. G. Grgić, and B. D. Dalmacija. 2019. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: Sources, fate, bioavailability, and remediation techniques. Journal of Hazardous Materials 365:467–482. doi:10.1016/j.jhazmat.2018.11.020.
  • Mojiri, A., J. Zhou, A. Ohashi, N. Ozaki, and T. Kindaichi. 2019. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. The Science of the Total Environment 696:133971. doi:10.1016/jscitotenv.2019.133971.
  • Olsson, P., I. Sadiktsis, J. Holmbäck, and R. Westerholm. 2014. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography – A prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates. Journal of Chromatography A 1360:39–46. doi:10.1016/j.chroma.2014.07.064L.
  • Oña-Ruales, J. O., L. C. Sander, W. B. Wilson, and S. A. Wise. 2018. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs)—six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da. Analytical and Bioanalytical Chemistry 410 (3):885–896. doi:10.1007/s00216-017-0456-x.
  • Pan, L., J. Ren, and J. Liu. 2006. Responses of antioxidant systems and LPO level to benzo(a)pyrene and benzo(k)fluoranthene in the haemolymph of the scallop Chlamys Ferrari. Environmental Pollution 141 (3):443–451. doi:10/1016/j.envpol.2005.08.069.
  • Santana, A., A. Comas, S. Wise, W. B. Wilson, and A. D. Campiglia. 2020. Instrumental improvements for the trace analysis of structural isomers of polycyclic aromatic hydrocarbons with molecular mass 302 Da. Analytica Chimica Acta 1100:163–73. doi:10.1016/j.aca.2019.10.067.
  • Thunberg, L., J. Hashemi, and S. Andersson. 2008. Comparative study of coated and immobilized polysaccharide-based chiral stationary phases and their applicability in the resolution of enantiomers. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 875 (1):72–80. doi:10.1016/j.jchromb.2008.07.044.
  • US EPA. 2018. SW-846 update VI, chromatography 8000D. Revision 5 March
  • Wenning, R. J., and L. Martello. 2014. Environmental forensics for persistent organic pollutants. Amsterdam, Netherlands: Elsevier B.V.
  • Wilson, W. B., B. Alfarhani, A. F. T. Moore, C. Bisson, S. A. Wise, and A. D. Campiglia. 2018. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol’skii spectroscopy. Analytical Methods 23:2661–794. doi:10.1039/C8AY00760H.
  • Wilson, W. B., H. V. Hayes, L. C. Sander, A. D. Campiglia, and S. A. Wise. 2017a. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase. Analytical and Bioanalytical Chemistry 409 (22):5291–305. doi:10.1039/C8AY90140F.
  • Wilson, W. B., H. V. Hayes, L. C. Sandler, A. D. Campiglia, and S. A. Wise. 2017b. Qualitative characterization of SRM 1597a: Coal tar for polycyclic aromatic hydrocarbons and methyl substituted derivatives via normal phase liquid chromatography and gas phase chromatography/mass spectroscopy. Analytical Bioanalytical Chemistry 409:5171–83. doi:10.1007/s00216-017-0464-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.