167
Views
0
CrossRef citations to date
0
Altmetric
Biosensors

Colorimetric and Fluorescent Determination of Alkaline Phosphatase and Ascorbic Acid based upon the Inner Filter Effect using up-Conversion Nanoparticles

, , , , , , , , & show all
Pages 2910-2920 | Received 23 Dec 2022, Accepted 06 Mar 2023, Published online: 20 Mar 2023

References

  • Chen, P., S. Yan, E. Sawyer, B. Ying, X. Wei, Z. Wu, and J. Geng. 2019. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition. The Analyst 144 (4):1147–52. doi:10.1039/c8an01925h.
  • Chen, S., Y. L. Yu, and J. H. Wang. 2018. Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta 999:13–26. doi:10.1016/j.aca.2017.10.026.
  • Craig, D. B., J. C. Wong, and N. J. Dovichi. 1996. Detection of attomolar concentrations of alkaline phosphatase by capillary electrophoresis using laser-induced fluorescence detection. Analytical Chemistry 68 (4):697–700.
  • Francés‐Soriano, L., N. Estebanez, J. Pérez‐Prieto, and N. Hildebrandt. 2022. DNA‐coated upconversion nanoparticles for sensitive nucleic acid FRET biosensing. Advanced Functional Materials 32 (37):2201541.
  • Gao, Z., K. Deng, X. D. Wang, M. Miró, and D. Tang. 2014. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Applied Materials & Interfaces 6 (20):18243–50.
  • Giang, N. N., H. J. Won, G. Lee, and S. Y. Park. 2021. Cancer cells targeted visible light and alkaline phosphatase-responsive TiO2/Cu2+ carbon dots-coated wireless electrochemical biosensor. Chemical Engineering Journal and the Biochemical Engineering Journal 417:129196. doi:10.1016/j.cej.2021.129196.
  • Giust, D., M. I. Lucío, A. H. El-Sagheer, T. Brown, L. E. Williams, O. L. Muskens, and A. G. Kanaras. 2018. Graphene oxide-upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano 12 (6):6273–9. doi:10.1021/acsnano.8b03261.
  • He, Y., and B. Jiao. 2017. Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchimica Acta 184:4167–73. doi:10.1007/s00604-017-2459-x.
  • Himmelstoß, S. F., and T. Hirsch. 2019. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence 7 (2):22002. doi:10.1088/2050-6120/ab0bfa.
  • Kaur, J., and P. K. Singh. 2021. An AIEgen–protamine assembly/disassembly based fluorescence turn-on probe for sensing alkaline phosphatase. Sens. Actuators B 346:130517. doi:10.1016/j.snb.2021.130517.
  • Kraft, M., C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger. 2018. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Research 11:6360–74. doi:10.1007/s12274-018-2159-9.
  • Kumar, B., K. Malhotra, R. Fuku, J. Van Houten, G. Y. Qu, P. A. Piunno, and U. J. Krull. 2021. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TRAC Trends in Analytical Chemistry 139:116256. doi:10.1016/j.trac.2021.116256.
  • Li, X., S. Zhao, B. Li, K. Yang, M. Lan, and L. Zeng. 2021. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coordination Chemistry Reviews 431:213686. doi:10.1016/j.ccr.2020.213686.
  • Liu, H., M. Li, Y. Xia, and X. Ren. 2017. A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces 9 (1):120–6.
  • Liu, Q., Y. Sun, T. Yang, W. Feng, C. Li, and F. Li. 2011. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. Journal of the American Chemical Society 133 (43):17122–5.
  • Ouyang, Q., Y. Liu, Q. Chen, Z. Guo, J. Zhao, H. Li, and W. Hu. 2017. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 81:156–63. doi:10.1016/j.foodcont.2017.06.004.
  • Panigrahi, S. K., and A. K. Mishra. 2019. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. Journal of Photochemistry and Photobiology A: Chemistry 41:100318.
  • Ruan, C., W. Wang, and B. Gu. 2006. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Analytical Chemistry 78 (10):3379–84.
  • Shaban, S. M., S. B. Jo, E. Hafez, J. H. Cho, and D. H. Kim. 2022. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordination Chemistry Reviews 465:214567. doi:10.1016/j.ccr.2022.214567.
  • Tong, X., Y. Zhu, C. Tong, S. Shi, R. Long, and Y. Guo. 2021. Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Analytica Chimica Acta 1178:338829. doi:10.1016/j.aca.2021.338829.
  • Wang, L., K. Ye, J. Pan, H. Song, and X. Niu. 2019. A novel alkaline phosphatase assay based on the specific chromogenic interaction between Fe3+ and ascorbic acid 2-phosphate. Analytical Methods 11 (18):2374–7.
  • Weitner, T., T. Friganović, and D. Šakić. 2022. Inner Filter Effect Correction for Fluorescence Measurements in Microplates Using Variable Vertical Axis Focus. Analytical Chemistry 94 (19):7107–14.
  • Yangyang, Y., Z. Chen, P. Rizhao, Z. Shiwei, Y. Shengtao, T. Yao, W. Zhu, L. Wang, W. Zhua, Y. Xu, et al. 2020. A ratiometric fluorescent probe for alkaline phosphatase with high sensitivity. Chinese Chemical Letters 31 (1):125–8.
  • Zhan, Y., S. Yang, L. Chen, Y. Zeng, L. Li, Z. Lin, L. Guo, and W. Xu. 2021. Ultrahigh efficient FRET ratiometric fluorescence biosensor for visual detection of alkaline phosphatase activity and its inhibitor. ACS Sustainable Chemistry & Engineering 9 (38):12922–9.
  • Zhang, J., R. Zhou, D. Tang, X. Hou, and P. Wu. 2019. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TRAC Trends in Analytical Chemistry 110:183–90. doi:10.1016/j.trac.2018.11.002.
  • Zhang, Y., Y. Nie, R. Zhu, D. Han, H. Zhao, and Z. Li. 2019. Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect. Talanta 204:74–81. doi:10.1016/j.talanta.2019.05.099.
  • Zhu, R., W. Huang, X. Ma, Y. Zhang, C. Yue, W. Fang, Y. Hu, J. Wang, J. Dang, H. Zhao, et al. 2019. Nitrogen-doped carbon dots-V2O5 nanobelts sensing platform for sensitive detection of ascorbic acid and alkaline phosphatase activity. Analytica Chimica Acta 1089:131–43. doi:10.1016/j.aca.2019.08.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.