212
Views
3
CrossRef citations to date
0
Altmetric
Biosensors

Target-induced Strand Displacement-based Electrochemical Aptasensor for the Determination of Tobramycin in Milk by Differential Pulse Voltammetry (DPV)

, ORCID Icon, , , , , , , & show all
Pages 2921-2936 | Received 18 Jan 2023, Accepted 06 Mar 2023, Published online: 20 Mar 2023

References

  • Ali, G. A. M., M. R. Thalji, W. C. Soh, H. Algarni, and K. F. Chong. 2020. One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. Journal of Solid State Electrochemistry 24 (1):25–34. doi:10.1007/s10008-019-04449-5.
  • Chen, K. C., H. L. Zhao, Z. X. Wang, F. F. Zhou, Z. H. Shi, S. D. Cao, and M. B. Lan. 2022. Sandwich-type electrochemical aptasensor based on Au-modified conductive octahedral carbon architecture and snowflake-like PtCuNi for the sensitive detection of cardiac troponin I. Biosensors & Bioelectronics 212:114431. doi:10.1016/j.bios.2022.114431.
  • Chen, L. Y., H. S. Chen, and M. Shen. 2014. Hydrophilic interaction chromatography combined with tandem mass spectrometry method for the quantification of tobramycin in human plasma and its application in a pharmacokinetic study. Journal of Chromatography B 973:39–44. doi:10.1016/j.jchromb.2014.10.007.
  • Chen, S., P. Liu, K. W. Su, X. Li, Z. Qin, W. Xu, J. Chen, C. R. Li, and J. F. Qiu. 2018. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosensors & Bioelectronics 99:338–45. doi:10.1016/j.bios.2017.08.006.
  • Dong, J., D. Zhang, C. Li, T. Bai, H. L. Jin, and Z. G. Suo. 2022. A sensitive electrochemical sensor based on PtNPs@Cu-MOF signal probe and DNA walker signal amplification for Pb2+ detection. Bioelectrochemistry 146:108134. doi:10.1016/j.bioelechem.2022.108134.
  • Duan, Y. Y., N. Wang, Z. X. Huang, H. X. Dai, L. Xu, S. J. Sun, H. Y. Ma, and M. Lin. 2020. Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform. Materials Science and Engineering: C 108:110501. doi:10.1016/j.msec.2019.110501.
  • Han, Z. Y., H. Zhang, H. K. Li, Q. Q. Zhu, and H. M. He. 2021. Ingenious construction of an electrochemical aptasensor based on a Au@COF/GO-NH2 composite with excellent detection performance. Journal of Materials Chemistry C 9 (13):4576–82. doi:10.1039/D1TC00319D.
  • He, B. S., and S. S. Yan. 2019. Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core–shell nanoparticles. Microchimica Acta 186 (2):8. doi:10.1007/s00604-018-3188-5.
  • Jiang, J. Q., Y. Q. Yu, H. Zhang, and C. X. Cai. 2020. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Analytica Chimica Acta 1130:1–9. doi:10.1016/j.aca.2020.07.012.
  • Jin, X., L. Chen, Y. T. Zhang, X. L. Wang, and N. D. Zhou. 2021. A lateral flow strip for on-site detection of tobramycin based on dual-functional platinum-decorated gold nanoparticles. The Analyst 146 (11):3608–16. doi:10.1039/d1an00403d.
  • Kashefi, K. L., A. Koyappayil, T. Kim, Y. P. Cheon, and M. H. Lee. 2021. A MoS2@Ti3C2Tx MXene hybrid-based electrochemical aptasensor (MEA) for sensitive and rapid detection of Thyroxine. Bioelectrochemistry 137:10. doi:10.1016/j.bioelechem.2020.107674.
  • Li, X. Y., N. Falcone, M. N. Hossain, H. B. Kraatz, X. J. Chen, and H. Huang. 2021. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of Ochratoxin A. Talanta 226:122183. doi:10.1016/j.talanta.2021.122183.
  • Li, J. W., H. L. Jin, M. Wei, W. J. Ren, J. S. Wang, Y. R. Zhang, L. G. Wu, and B. S. He. 2021. Dual mode competitive electrochemical immunoassay for dibutyl phthalate detection based on PEI functionalized nitrogen doped graphene-CoSe2/gold nanowires and thionine-Au@Pt core–shell. Sensors and Actuators B: Chemical 331:129401. doi:10.1016/j.snb.2020.129401.
  • Li, F. L., Y. F. Wu, D. F. Chen, Y. M. Guo, X. Y. Wang, and X. Sun. 2021. Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk. International Journal of Hydrogen Energy 46 (45):23301–9. doi:10.1016/j.ijhydene.2021.04.007.
  • Li, F. L., X. L. Gao, X. Y. Wang, Y. M. Guo, X. Sun, Q. Q. Yang, and Y. Y. Zhang. 2022. Ultrasensitive sandwich RNA-aptasensor based on dual-signal amplification strategy for highly sensitive neomycin detection. Food Control.131:108445. doi:10.1016/j.foodcont.2021.108445.
  • Li, Z. Y., D. Y. Li, L. Huang, R. Hu, T. Yang, and Y. H. Yang. 2022. An electrochemical aptasensor based on intelligent walking DNA nanomachine with cascade signal amplification powered by nuclease for Mucin 1 assay. Analytica Chimica Acta 1214:339964. doi:10.1016/j.aca.2022.339964.
  • Liu, X., Y. N. Jiang, J. Luo, X. Y. Guo, Y. Ying, Y. Wen, H. F. Yang, and Y. P. Wu. 2021. A SnO2/Bi2S3-based photoelectrochemical aptasensor for sensitive detection of tobramycin in milk. Food Chemistry 344:128716. doi:10.1016/j.foodchem.2020.128716.
  • Liu, X. Q., Y. F. Tang, P. P. Liu, L. W. Yang, L. L. Li, Q. Y. Zhang, Y. M. Zhou, and M. Z. H. Khan. 2019. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy. The Analyst 144 (5):1671–8. doi:10.1039/c8an01971a.
  • Lv, H., Y. Y. Li, X. B. Zhang, X. J. Li, Z. Xu, L. Chen, D. G. Li, and Y. H. Dong. 2019. Thionin functionalized signal amplification label derived dual-mode electrochemical immunoassay for sensitive detection of cardiac troponin I. Biosensors & Bioelectronics 133:72–8. doi:10.1016/j.bios.2019.03.033.
  • Medeiros, T. D., E. C. Pinto, L. M. Cabral, and V. P. de Sousa. 2021. Tobramycin: A review of detectors used in analytical approaches for drug substance, its impurities and in pharmaceutical formulation. Microchemical Journal 160:10. doi:10.1016/j.microc.2020.105658.
  • Mukhtar, N. H., N. A. Mamat, and H. H. See. 2018. Monitoring of tobramycin in human plasma via mixed matrix membrane extraction prior to capillary electrophoresis with contactless conductivity detection. Journal of Pharmaceutical and Biomedical Analysis 158:184–8. doi:10.1016/j.jpba.2018.05.044.
  • Nie, J. J., L. Y. Yuan, K. Jin, X. Y. Han, Y. P. Tian, and N. D. Zhou. 2018. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity. Biosensors & Bioelectronics 122:254–62. doi:10.1016/j.bios.2018.09.072.
  • Ou, Y., X. Jin, J. W. Fang, Y. P. Tian, and N. D. Zhou. 2020. Multi-cycle signal-amplified colorimetric detection of tobramycin based on dual-strand displacement and three-way DNA junction. Microchemical Journal 156:104823. doi:10.1016/j.microc.2020.104823.
  • Park, Y., M. S. Hong, W. H. Lee, J. G. Kim, and K. Kim. 2021. Highly sensitive electrochemical aptasensor for detecting the VEGF(165) tumor marker with PANI/CNT nanocomposites. Biosensors-Basel 11 (4):11. doi:10.3390/bios11040114.
  • Peng, H. S., Y. Y. Hui, L. M. Zhang, F. X. Zhang, Y. F. Liu, J. B. Zheng, R. Jia, Y. X. Song, and B. N. Wang. 2022. A novel electrochemical aptasensor based on Ti3C2-MOFs nanocomposites for rapid streptomycin detection in milk samples. Sensors and Actuators B: Chemical 368:132119. doi:10.1016/j.snb.2022.132119.
  • Qiao, L., Y. Zhu, T. Zeng, Y. Zhang, M. Zhang, K. Song, N. Yin, Y. Tao, Y. Zhao, Y. Zhang, et al. 2023. Turn-off" photoelectrochemical aptasensor based on g-C3N4/WC/WO3 composites for tobramycin detection. Food Chemistry 403:134287. doi:10.1016/j.foodchem.2022.134287.
  • Qin, X. L., Y. Yin, H. J. Yu, W. J. Guo, and M. S. Pei. 2016. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosensors & Bioelectronics 77:752–8. doi:10.1016/j.bios.2015.10.050.
  • Ran, G. J., F. M. Wu, X. Y. Ni, X. Y. Li, X. S. Li, D. L. Liu, J. X. Sun, C. F. Xie, D. S. Yao, and W. B. Bai. 2020. A novel label-free electrochemical aptasensor with one-step assembly process for rapid detection of lead (II) ions. Sensors and Actuators B: Chemical 320:128326. doi:10.1016/j.snb.2020.128326.
  • Rezaei, B., and S. Damiri. 2008. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sensors and Actuators B: Chemical 134 (1):324–31. doi:10.1016/j.snb.2008.05.004.
  • Rowe, A. A., E. A. Miller, and K. W. Plaxco. 2010. Reagent less measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Analytical Chemistry 82 (17):7090–5. doi:10.1021/ac101491d.
  • Shekari, Z., H. R. Zare, and A. Falahati. 2021. Dual assaying of breast cancer biomarkers by using a sandwich-type electrochemical aptasensor based on a gold nanoparticles-3D graphene hydrogel nanocomposite and redox probes labeled aptamers. Sensors and Actuators B: Chemical 332:129515. doi:10.1016/j.snb.2021.129515.
  • Shou, D., Z. Y. Zhu, Y. Zhang, Y. Dong, L. F. Shen, and Y. Zhu. 2012. Analysis of tobramycin in human drainage tissue fluid by ion chromatography with pulsed integrated amperometric detection. Chinese Journal of Analytical Chemistry 40 (6):960–3. doi:10.3724/SP.J.1096.2012.11079.
  • Suo, Z. G., X. Y. Niu, R. K. Liu, L. K. Xin, Y. Liu, and M. Wei. 2022. A methylene blue and Ag+ ratiometric electrochemical aptasensor based on Au@Pt/Fe-N-C signal amplification strategy for zearalenone detection. Sensors and Actuators B: Chemical 362:131825. doi:10.1016/j.snb.2022.131825.
  • Tig, G. A., and S. Pekyardimci. 2020. An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 210:8. doi:10.1016/j.talanta.2019.120666.
  • Wang, B. T., B. S. He, R. Guo, Q. Jiao, Y. Liang, J. S. Wang, Y. Liu, W. J. Ren, and Z. G. Suo. 2021. ltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core–shell nanonitrofuran metabolites residues detection. Bioelectrochemistry 142:9. doi:10.1016/j.bioelechem.2021.107934.
  • Wang, M. Y., J. Z. Liu, C. Zhang, G. P. Li, B. X. Ye, and L. A. Zou. 2022. A highly sensitive photoelectrochemical aptsensor based on photocathode CuInS2 for the detection of tobramycin. Microchemical Journal 181:107847. doi:10.1016/j.microc.2022.107847.
  • Wang, J. Y., H. X. Li, C. Y. Du, Y. Li, X. Y. Ma, C. Y. Yang, W. T. Xu, and C. Y. Sun. 2022. Structure-switching aptamer triggering signal amplification strategy for tobramycin detection based on hybridization chain reaction and fluorescence synergism. Talanta 243:123318. doi:10.1016/j.talanta.2022.123318.
  • Wang, S. J., Z. Z. Li, F. H. Duan, B. Hu, L. H. He, M. H. Wang, N. Zhou, Q. J. Jia, and Z. H. Zhang. 2019. Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection. Analytica Chimica Acta 1047:150–62. doi:10.1016/j.aca.2018.09.064.
  • Xiong, Y., S. Chen, F. Ye, L. Su, C. Zhang, S. Shen, and S. Zhao. 2015. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chemical Communications (Cambridge, England) 51 (22):4635–8. doi:10.1039/c4cc10346g.
  • Xue, J., Y. Li, J. Liu, Z. X. Zhang, R. J. Yu, Y. L. Huang, C. R. Li, A. Y. Chen, and J. F. Qiu. 2022. Highly sensitive electrochemical aptasensor for SARS-CoV-2 antigen detection based on aptamer-binding induced multiple hairpin assembly signal amplification. Talanta 248:123605. doi:10.1016/j.talanta.2022.123605.
  • Yan, H., B. S. He, R. Y. Zhao, W. J. Ren, Z. G. Suo, Y. W. Xu, Y. R. Zhang, C. Q. Bai, H. Y. Yan, and R. L. Liu. 2022. Electrochemical aptasensor based on Ce3NbO7/CeO2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. Journal of Hazardous Materials 438:129491. doi:10.1016/j.jhazmat.2022.129491.
  • Yu, M. D., X. H. Zhang, X. Zhang, Q. U. Zahra, Z. H. Huang, Y. Chen, C. X. Song, M. Song, H. J. Jiang, Z. F. Luo, et al. 2022. An electrochemical aptasensor with N protein binding aptamer-complementary oligonucleotide as probe for ultra-sensitive detection of COVID-19. Biosensors and Bioelectronics 213:114436. doi:10.1016/j.bios.2022.114436.
  • Yuan, R. R., Z. B. Liu, H. Sun, and H. M. He. 2021. Porphyrin-based porous organic frameworks for the ultrasensitive electrochemical impedimetric aptasensing of oxytetracycline. Applied Surface Science 569:151038. doi:10.1016/j.apsusc.2021.151038.
  • Zhang, B. Z., P. P. Tian, H. N. Zhu, L. L. Xie, P. B. Dai, and B. S. He. 2021. Ultrasensitive detection of PCB77 based on exonuclease III-powered DNA walking machine. Journal of Hazardous Materials 416:125831. doi:10.1016/j.jhazmat.2021.125831.
  • Zhang, Z. P., C. C. Tao, J. G. Yin, Y. H. Wang, and Y. S. Li. 2018. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Biosensors & Bioelectronics 103:39–44. doi:10.1016/j.bios.2017.12.027.
  • Zhang, Z. Z., M. Zhang, Y. H. Xu, Z. R. Wen, C. F. Ding, Y. S. Guo, N. Hao, and K. Wang. 2020. Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection. Sensors and Actuators B: Chemical 321:128464. doi:10.1016/j.snb.2020.128464.
  • Zhong, T. T., S. S. Li, X. Li, Y. S. JiYe, Y. Y. Mo, L. Y. Chen, Z. Q. Zhang, H. J. Wu, M. L. Li, and Q. Y. Luo. 2022. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1. Food Chemistry 384:132495. doi:10.1016/j.foodchem.2022.132495.
  • Zhu, C. X., D. Liu, Y. Y. Li, S. Ma, M. Wang, and T. Y. You. 2021. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of Aflatoxin B1 and Ochratoxin A. Biosensors and Bioelectronics 174:112654. doi:10.1016/j.bios.2020.112654.
  • Zhu, L., and J. K. Wang. 2013. Fast determination of tobramycin by reversed-phase ion-pair high performance liquid chromatography with a refractive index detector. Frontiers of Chemical Science and Engineering 7 (3):322–8. doi:10.1007/s11705-013-1348-z.
  • Zhu, Q., R. Li, X. Sun, and Z. J. Li. 2022. Highly sensitive and selective electrochemical aptasensor with gold-aspartic acid, glycine acid-functionalized and boron-doped graphene quantum dot nanohybrid for detection of alpha-amanitin in blood. Analytica Chimica Acta 1219:340033. doi:10.1016/j.aca.2022.340033.
  • Zhu, Q. Q., H. K. Li, X. L. Sun, Z. Y. Han, J. C. Sun, and H. M. He. 2021. Rational incorporation of covalent organic framework/carbon nanotube (COF/CNT) composites for electrochemical aptasensing of ultra-trace atrazine. Journal of Materials Chemistry C 9 (25):8043–50. doi:10.1039/D1TC01506K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.