101
Views
0
CrossRef citations to date
0
Altmetric
Voltammetry

Highly Sensitive Electrochemical Determination of Luteolin Using Self-Assembled Titanium Carbide/Single-Walled Carbon Nanohorns (SWCNHs) and Differential Pulsed Stripping Voltammetry (DPV)

, , , , & ORCID Icon
Pages 640-652 | Received 16 Mar 2023, Accepted 30 May 2023, Published online: 15 Jun 2023

References

  • Benazzi, E., F. Begato, A. Niorettini, L. Destro, K. Wurst, G. Licini, S. Agnoli, C. Zonta, and M. Natali. 2021. Electrocatalytic hydrogen evolution using hybrid electrodes based on single-walled carbon nanohorns and cobalt(II) polypyridine complexes. Journal of Materials Chemistry A 9 (35):20032–20039. doi:10.1039/D1TA03645A.
  • Bhat, K. S., S. Byun, A. Alam, M. Ko, J. An, and S. Lim. 2022. A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti3C2 MXene-based electrochemical sensor. Talanta 244:123421. doi:10.1016/j.talanta.2022.123421.
  • Cao, C., Q. Chang, H. Qiao, R. Shao, X. Guo, G. Xiao, W. Shi, and L. Huang. 2021. Determination of H+ ion diffusion in Ti3C2-rGO glucose sensor. Sensors and Actuators B: Chemical 340:129943. doi:10.1016/j.snb.2021.129943.
  • Chen, X., Y. Guo, R. Bian, Y. Jia, X. Wang, X. Zhang, H. Cui, and J. Tian. 2022. Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. Journal of Colloid and Interface Science 613:644–651. doi:10.1016/j.jcis.2022.01.079.
  • Dutta, K., S. De, B. Das, S. Bera, B. Guria, M. S. Ali, and D. Chattopadhyay. 2021. Development of an efficient immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of cancer biomarker. ACS Biomaterials Science & Engineering 7 (12):5541–5554. doi:10.1021/acsbiomaterials.1c00753.
  • Huang, R., S. Chen, J. Yu, and X. Jiang. 2019. Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicology and Environmental Safety 184:109619. doi:10.1016/j.ecoenv.2019.109619.
  • Huang, R., D. Liao, S. Chen, J. Yu, and X. Jiang. 2020. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N doped porous carbon. Sensors and Actuators B: Chemical 320:128386. doi:10.1016/j.snb.2020.128386.
  • Huang, H., S. Xie, L. Deng, J. Yuan, R. Yue, and J. Xu. 2022. Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection. Microchimica Acta 189 (2):1–10. doi:10.1007/s00604-021-05132-1.
  • Itkes, M. P. M., G. G. de Oliveira, T. A. Silva, O. Fatibello-Filho, and B. C. Janegitz. 2019. Voltammetric sensing of fenitrothion in natural water and orange juice samples using a single-walled carbon nanohorns and Zein modified sensor. Journal of Electroanalytical Chemistry 840:21–26. doi:10.1016/j.jelechem.2019.03.055.
  • Itoh, T., K. Urita, E. Bekyarova, M. Arai, M. Yudasaka, S. Iijima, T. Ohba, K. Kaneko, and H. Kanoh. 2008. Nanoporosities and catalytic activities of Pd-tailored single wall carbon nanohorns. Journal of Colloid and Interface Science 322 (1):209–214. doi:10.1016/j.jcis.2008.02.049.
  • Kong, W., F. Gong, Q. Zhou, G. Yu, L. Ji, X. Sun, A. M. Asiri, T. Wang, Y. Luo, and Y. Xu. 2019. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. Journal of Materials Chemistry A 7 (32):18823–18827. doi:10.1039/C9TA04902A.
  • Liao, D., Z. H. Liu, R. Huang, J. Yu, and X. Jiang. 2022. In-situ construction of porous carbon on embedded N-doped MXene nanosheets composite for simultaneous determination of 4-aminophenol and acetaminophen. Microchemical Journal 175:107067. doi:10.1016/j.microc.2021.107067.
  • Liu, X., Y. Ying, and J. Ping. 2020. Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosensors & Bioelectronics 167:112495. doi:10.1016/j.bios.2020.112495.
  • Murugan, N., R. Jerome, M. Preethika, A. Sundaramurthy, and A. K. Sundramoorthy. 2021. 2D titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Journal of Materials Science & Technology 72:122–131. doi:10.1016/j.jmst.2020.07.037.
  • Ni, M., J. Chen, C. Wang, Y. Wang, L. Huang, W. Xiong, P. Zhao, Y. Xie, and J. Fei. 2022. A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchemical Journal 178:107410. doi:10.1016/j.microc.2022.107410.
  • Peng, X., Y. Zhang, D. Lu, Y. Guo, and S. Guo. 2019. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sensors and Actuators B: Chemical 286:222–229. doi:10.1016/j.snb.2019.01.158.
  • Rajaji, U., P. S. Ganesh, S. Y. Kim, M. Govindasamy, R. A. Alshgari, and T. Y. Liu. 2022. MoS2 sphere/2D S-Ti3C2 MXene nanocatalysts on laser-induced graphene electrodes for hazardous aristolochic acid and roxarsone electrochemical detection. ACS Applied Nano Materials 5 (3):3252–3264. doi:10.1021/acsanm.1c03680.
  • Sahu, S. R., V. R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan, and R. Prakash. 2020. A novel α-MoO3/single-walled carbon nanohorns nanocomposite as high-performance anode material for fast-charging lithium-ion battery. Advancedenergy Materials 10 (36):2001627.
  • Sinha, A., H. Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, and J. Rajeev. 2018. MXene: An emerging material for sensing and biosensing. TrAC Trends in Analytical Chemistry 105:424–435. doi:10.1016/j.trac.2018.05.021.
  • Smirnov, A. A., S. A. Khromova, O. A. Bulavchenko, V. V. Kaichev, A. A. Saraev, S. I. Reshetnikov, M. V. Bykova, L. I. Trusov, and V. A. Yakovlev. 2014. Effect of the Ni/Cu ratio on the composition and catalytic properties of nickel-copper alloy in anisole hydrodeoxygenation. Kinetics and Catalysis 55 (1):69–78. doi:10.1134/S0023158414010145.
  • Termvidchakorn, C., K. Faungnawakij, S. Kuboon, T. Butburee, N. Sano, and T. Charinpanitkul. 2019. A novel catalyst of Ni hybridized with single-walled carbon nanohorns for converting methyl levulinate to c-valerolactone. Applied Surface Science 474 (Apr. 30):161–168. doi:10.1016/j.apsusc.2018.04.054.
  • Wang, X., M. Li, S. Yang, and J. Shan. 2020. A novel electrochemical sensor based on TiO2-Ti3C2TX/CTAB/chitosan composite for the detection of nitrite. Electrochimica Acta 359:136938. doi:10.1016/j.electacta.2020.136938.
  • Wang, D., D. Zhang, Y. Yang, Q. Mi, J. Zhang, and L. Yu. 2021. Multifunctional latex/polytetra-fluoroethylene-based triboelectric nanogenerator for self-powered organlike MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 15 (2):2911–2919. doi:10.1021/acsnano.0c09015.
  • Wu, W., C. Zhao, D. Niu, J. Zhu, D. Wei, C. Wang, L. Wang, and L. Yang. 2021. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors. Applied Surface Science 539 (15):148272. doi:10.1016/j.apsusc.2020.148272.
  • Xiao, Z., Z. Li, P. Li, X. Meng, and R. Wang. 2019. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high energy-density lithium-sulfur batteries. ACS Nano 13 (3):3608–3617. doi:10.1021/acsnano.9b00177.
  • Yao, Y., H. Wu, and J. Ping. 2019. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chemistry 274:8–15. doi:10.1016/j.foodchem.2018.08.110.
  • Zhang, X., D. An, Z. Bi, W. Shan, B. Zhu, L. Zhou, L. Yu, H. Zhang, S. Xia, and M. Qiu. 2022. Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. Journal of Electroanalytical Chemistry 911:116239. doi:10.1016/j.jelechem.2022.116239.
  • Zhang, R., J. Liu, and Y. Li. 2019b. MXene with great adsorption ability toward organic dye: An excellent material for constructing a ratiometric electrochemical sensing platform. ACS Sensors 4 (8):2058–2064. doi:10.1021/acssensors.9b00654.
  • Zhang, J., Y. Liu, Z. Yu, M. Huang, C. Wu, C. Jin, and L. Guan. 2019a. Boosting the performance of the Fe-N-C catalyst for the oxygen reduction reaction by introducing single-walled carbon nanohorns as branches on carbon fibers. Journal of Materials Chemistry A 7 (40):23182–23190. doi:10.1039/C9TA08938A.
  • Zhang, H., M. Li, C. Zhu, Q. Tang, P. Kang, and J. Cao. 2020. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceramics International 46 (1):81–88. doi:10.1016/j.ceramint.2019.08.236.
  • Zheng, J., J. Diao, Y. Jin, A. Ding, B. Wang, L. Wu, B. Weng, and J. Chen. 2018a. An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. Journal of the Electrochemical Society 165 (5):B227–B231. doi:10.1149/2.0051807jes.
  • Zheng, W., P. Zhang, J. Chen, W. B. Tian, Y. M. Zhang, and Z. M. Sun. 2018b. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. Journal of Materials Chemistry A 6 (8):3543–3551. doi:10.1039/C7TA10394H.
  • Zhou, S., X. Yang, W. Pei, N. Liu, and J. Zhao. 2018. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10 (23):10876–10883. doi:10.1039/c8nr01090k.
  • Zhu, S., and G. Xu. 2010. Single-walled carbon nanohorns and their applications. Nanoscale 2 (12):2538–2549. doi:10.1039/c0nr00387e.
  • Zieleniewska, A., F. Lodermeyer, M. Prato, G. Rumbles, D. M. Guldi, and J. L. Blackburn. 2022. Elucidating the electronic properties of single wall carbon nanohorns. Journal of Materials Chemistry C 10 (15):5783–5786. doi:10.1039/D2TC00179A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.