142
Views
0
CrossRef citations to date
0
Altmetric
Spectroscopy

Bioaccessibility of Fifteen Elements from Dried Fruits by the BARGE (Bioaccessibility Research Group of Europe) Unified Bioaccessibility Method (UBM) and Multivariate Statistical Analysis

&
Pages 1162-1181 | Received 25 Nov 2022, Accepted 26 Jul 2023, Published online: 10 Aug 2023

References

  • Alasalvar, C., J.-S. Salvadó, and E. Ros. 2020. Bioactives and health benefits of nuts and dried fruits. Food Chemistry 314:126192. doi:10.1016/j.foodchem.2020.126192.
  • Alasalvar, C. F., and F. Shahidi. 2013. Composition, phytochemicals, and beneficial health effects of dried fruits: An overview. In Dried fruits: Phytochemicals and health effects, ed. C. Alasalvar and F. Shahidi, 1–18. Oxford, UK: John Wiley & Sons.
  • Altundağ, H., and M. Tuzen. 2011. Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES. Food and Chemical Toxicology 49 (11):2800–7. doi:10.1016/j.fct.2011.07.064.
  • Arpadjan, S., S. Momchilova, T. Venelinov, E. Blagoeva, and M. Nikolova. 2013. Bioaccessibility of Cd, Cu, Fe, Mn, Pb, and Zn in hazelnut and walnut kernels investigated by an enzymolysis approach. Journal of Agricultural and Food Chemistry 61 (25):6086−91. doi:10.1021/jf401816j.
  • Berenguel, O., G. d. S. Pessôa, and M. A. Z. Arruda. 2018. Total content and in vitro bioaccessibility of tellurium in Brazil nuts. Journal of Trace Elements in Medicine and Biology 48:46–51. doi:10.1016/j.jtemb.2018.02.026.
  • Bertin, R. L., H. F. Maltez, J. S. de Gois, D. L. G. Borges, G. da Silva. C. Borges, L. V. Gonzaga, and R. Fett. 2016. Mineral composition and bioaccessibility in Sarcocornia ambigua using ICP-MS. Journal of Food Composition and Analysis 47:45–51. doi:10.1016/j.jfca.2015.12.009.
  • Broadway, A., M. R. Cave, J. Wragg, F. M. Fordyce, R. J. F. Bewley, M. C. Graham, B. T. Ngwenya, and J. G. Farmer. 2010. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. The Science of the Total Environment 409 (2):267–77. doi:10.1016/j.scitotenv.2010.09.007.
  • Erdemir, U. S., and S. Gucer. 2014. Fractionation analysis of manganese in Turkish hazelnuts (Corylusavellana L.) by inductively coupled plasma–mass spectrometry. Journal of Agricultural and Food Chemistry 62 (44):10792–9. doi:10.1021/jf503145t.
  • European Union (EU). 2008. Commission Regulation (EC) No. 629/2008. Setting maximum levels for certain contaminants in foodstuffs. Accessed November 24, 2022. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0629.
  • Ferreira, M. D. P., and C. R. T. Tarley. 2020. Assessment of in vitro bioacessibility of macrominerals and trace elements in green banana flour. Journal of Food Composition and Analysis 92:103586. doi:10.1016/j.jfca.2020.103586.
  • Hamilton, E. M., T. S. Barlow, C. J. B. Gowing, and M. J. Watts. 2015. Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal 123:131–8. doi:10.1016/j.microc.2015.06.001.
  • Hernández-Alonso, P., L. Camacho-Barcia, M. Bulló, and J. Salas-Salvadó. 2017. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients 9:673. doi:10.3390/nu9070673.
  • Herrera-Agudelo, M. A., M. Miró, and M. A. Z. Arruda. 2017. In vitro oral bioaccessibility and total content of Cu, Fe, Mn and Zn from transgenic (through cp4 EPSPS gene) and nontransgenic precursor/successor soybean seeds. Food Chemistry 225:125–31. doi:10.1016/j.foodchem.2017.01.017.
  • Intawongse, M., and J. R. Dean. 2006. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends in Analytical Chemistry 25 (9):876–86. doi:10.1016/j.trac.2006.03.010.
  • Intawongse, M., N. Kongchouy, and J. R. Dean. 2018. Bioaccessibility of heavy metals in the seaweed Caulerpa racemosa var. corynephora: Human health risk from consumption. Instrumentation Science & Technology 46 (6):628–44. doi:10.1080/10739149.2018.
  • Jeszka-Skowron, M., and B. Czarczyńska-Goślińska. 2020. Raisins and the other dried fruits: Chemical profile and health benefits. In The Mediterranean diet: An evidence-based approach, eds. V. R. Preedy, and R. R. Watson, 2nd ed, 229–38. Cambridge, MA: Elsevier Science.
  • Kafaoğlu, B., A. Fisher, S. Hill, and D. Kara. 2016. Determination and evaluation of element bioaccessibility in some nuts and seeds by in-vitro gastro-intestinal method. Journal of Food Composition and Analysis 45:58–65. doi:10.1016/j.jfca.2015.09.011.
  • Khouzam, R. B., P. Pohl, and R. Lobinski. 2011. Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta 86:425–8. doi:10.1016/j.talanta.2011.08.049.
  • Kulkarni, S. D., R. Acharya, N. S. Rajurkar, and A. V. R. Reddy. 2007. Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry 103 (2):681–8. doi:10.1016/j.foodchem.2006.07.057.
  • Kumari, M., and K. Platel. 2017. Bioaccessibility of trace elements and chromium speciation in commonly consumed cereals and pulses. International Journal of Food Properties 20 (7):1612–20. doi:10.1080/10942912.2016.1215996.
  • Laparra, J. M., D. Vélez, R. Montoro, R. Barberá, and R. Farré. 2003. Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. Journal of Agricultural and Food Chemistry 51 (20):6080–5. doi:10.1021/jf034537i.
  • Leufroy, A., L. Noël, D. Beauchemin, and T. Guérin. 2012. Use of a continuous leaching method to assess the oral bioaccessibility of trace elements in seafood. Food Chemistry 135 (2):623–33. doi:10.1016/j.foodchem.2012.03.119.
  • Li, M., Y. Qin, C. Wang, K. Wang, Z. Deng, W. Xu, P. Xiang, and L. Q. Ma. 2021. Total and bioaccessible heavy metals in cabbage from major producing cities in Southwest China: Health risk assessment and cytotoxicity. RSC Advances 11 (20):12306–14. doi:10.1039/d1ra01440d.
  • Martins, A. C., B. N. Krum, L. Queirós, A. A. Tinkov, A. V. Skalny, A. B. Bowman, and M. Aschner. 2020. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects. Journal of Agricultural and Food Chemistry 68 (46):12893–903. doi:10.1021/acs.jafc.0c00641.
  • do Nascimento da Silva, E., A. B. P. Leme, M. Cidade, and S. Cadore. 2013. Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods. Talanta 117:184–8. doi:10.1016/j.talanta.2013.09.008.
  • Oomen, A. G., A. Hack, M. Minekus, E. Zeijdner, C. Cornelis, G. Schoeters, W. Verstraete, T. Van de Wiele, J. Wragg, C. J. M. Rompelberg, et al. 2002. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology 36 (15):3326–34. doi:10.1021/es010204v.
  • de Paiva, E. L., C. Medeiros, R. F. Milani, M. A. Morgano, J. A. L. Pallone, and A. P. A. Bragotto. 2020. Aluminum content and effect of in vitro digestion on bioaccessible fraction in cereal-based baby foods. Food Research International (Ottawa, ON) 131:108965. doi:10.1016/j.foodres.2019.108965.
  • Peixoto, R. R. A., V. Devesa, D. Vélez, M. L. Cervera, and S. Cadore. 2016. Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder. Journal of Food Composition and Analysis 48:41–7. doi:10.1016/j.jfca.2016.02.002.
  • Pelfrêne, A., C. Waterlot, and F. Douay. 2011. Investigation of DGT as a metal speciation tool in artificial human gastrointestinal fluids. Analytica Chimica Acta 699 (2):177–86. doi:10.1016/j.aca.2011.05.024.
  • Pelfrêne, A., C. Waterlot, A. Guerin, N. Proix, A. Richard, and F. Douay. 2015. Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: The influence of cooking. Environmental Geochemistry and Health 37 (4):767–78. doi:10.1007/s10653-015-9684-1.
  • Pereira, C. C., E. do Nascimento da Silva, A. O. de Souza, M. A. Vieira, A. S. Ribeiro, and S. Cadore. 2018. Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. Journal of Food Composition and Analysis 68:73–8. doi:10.1016/j.jfca.2016.12.001.
  • Ruby, M. V., R. Schoof, W. Brattin, M. Goldade, G. Post, M. Harnois, D. E. Mosby, S. W. Casteel, W. Berti, M. Carpenter, et al. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology 33 (21):3697–705. doi:10.1021/es990479z.
  • Santos, W. P. C., N. M. Ribeiro, D. C. M. B. Santos, M. G. A. Korn, and M. V. Lopes. 2018. Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil. Food Chemistry 240:112–22. doi:10.1016/j.foodchem.2017.07.051.
  • Souza, L. A., T. L. Souza, F. B. Santana, R. G. O. Araujo, L. S. G. Teixeira, D. C. M. B. Santos, and M. G. A. Korn. 2018. Determination and in vitro bioaccessibility evaluation of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn in linseed and sesame. Microchemical Journal 137:8–14. doi:10.1016/j.microc.2017.09.010.
  • de Souza, A. O., E. Do Nascimento da Silva, C. C. Pereira, S. Cadore, A. S. Ribeiro, and M. A. Vieira. 2021. Characterization of the bioaccessibility of minerals from commercial breakfast cereals by inductively coupled plasma optical emission spectrometry (ICP OES). Analytical Letters 54 (18):2874–82. doi:10.1080/00032719.2021.1899196.
  • de Souza, V. R., P. A. P. Pereira, T. L. T. da Silva, L. C. d O. Lima, R. Pio, and F. Queiroz. 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry 156:362–8. doi:10.1016/j.foodchem.2014.01.125.
  • Tokalıoğlu, Ş. 2023. Bioaccessibility of Cu, Mn, Fe, and Zn in fruit and vegetables by the in vitro UBM and statistical evaluation of the results. Biological Trace Element Research 201 (3):1538–46. doi:10.1007/s12011-022-03253-z.
  • Tokalıoğlu, Ş., R. Clough, M. Foulkes, and P. Worsfold. 2020. Stability of arsenic species during bioaccessibility assessment using the in vitro UBM and HPLC-ICP-MS detection. Biological Trace Element Research 198 (1):332–8. doi:10.1007/s12011-020-02066-2.
  • Tokalıoğlu, Ş., F. K. Dokan, and S. Köprü. 2019. ICP-MS multi-element analysis for determining the origin by multivariate analysis of red pepper flakes from three different regions of Turkey. Lwt 103:301–7. doi:10.1016/j.lwt.2019.01.015.
  • Tokalıoğlu, S., R. Clough, M. Foulkes, and P. Worsfold. 2014. Bioaccessibility of Cr, Cu, Fe, Mg, Mn, Mo, Se and Zn from nutritional supplements by the Unified BARGE method. Food Chemistry 150:321–7. doi:10.1016/j.foodchem.2013.10.151.
  • WHO. 1995. General standard for contaminants and toxins in food and feed CXS 193-1995. Accessed November 24, 2022. https://www.fao.org/fao-who-codexalimentarius.
  • Wragg, J., M. Cave, N. Basta, E. Brandon, S. Casteel, S. Denys, C. Gron, A. Oomen, K. Reimer, K. Tack, et al. 2011. An interlaboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. The Science of the Total Environment 409 (19):4016–30. doi:10.1016/j.scitotenv.2011.05.019.
  • Wragg, J., M. Cave, H. Taylor, N. Basta, E. Brandon, S. Casteel, C. Gron, A. Oemen, and T. Van de Wiele. 2011. An inter-laboratory trial of a unified bioaccessibility testing procedure. Report OR/07/027. 90. Nottingham, UK: British Geological Survey.
  • Wu, Z., X. Feng, P. Li, C.-J. Lin, G. Qiu, X. Wang, H. Zhao, and H. Dong. 2018. Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China. Journal of Environmental Sciences (China) 68:185–93. doi:10.1016/j.jes.2017.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.