203
Views
0
CrossRef citations to date
0
Altmetric
Clinical Analysis

Fluorescent Determination of Ferric Ion in vitro with Carbon Quantum Dots Prepared by L-Arginine and Citric Acid

ORCID Icon, , , , , , , & show all
Pages 1381-1393 | Received 15 Apr 2023, Accepted 16 Aug 2023, Published online: 03 Sep 2023

References

  • Ajlec, R., and J. Štupar. 1989. Determination of iron species in wine by ion-exchange chromatography-flame atomic absorption spectrometry. The Analyst 114 (2):137–42. doi: 10.1039/AN9891400137.
  • Atchudan, R., T. N. J. I. Edison, D. Chakradhar, S. Perumal, J. J. Shim, and Y. R. Lee. 2017. Facile green synthesis of nitrogen-doped carbon quantum dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors and Actuators B: Chemical 246:497–509. doi: 10.1016/j.snb.2017.02.119.
  • Atchudan, R., S. Chandra Kishore, P. Gangadaran, T. N. Jebakumar Immanuel Edison, S. Perumal, R. L. Rajendran, M. Alagan, S. Al-Rashed, B.-C. Ahn, and Y. R. Lee. 2022. Tunable fluorescent carbon quantum dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environmental Research 204 (Pt D):112365. doi: 10.1016/j.envres.2021.112365.
  • Bobrowski, A., K. Nowak, and J. Zarebski. 2005. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO3- catalytic system. Analytical and Bioanalytical Chemistry 382 (7):1691–7. doi: 10.1007/s00216-005-3313-2.
  • Chan, K. K., C. Yang, Y. H. Chien, N. Panwar, and K. T. Yong. 2019. A facile synthesis of label-free carbon quantum dots with unique selectivity-tunable characteristics for ferric ion detection and cellular imaging applications. New Journal of Chemistry 43 (12):4734–44. doi: 10.1039/C8NJ06306K.
  • Chen, J., J. S. Wei, P. Zhang, X. Q. Niu, W. Zhao, Z. Y. Zhu, H. Ding, and H. M. Xiong. 2017. Red-emissive carbon quantum dots for fingerprints detection by spray method: Coffee ring effect and unquenched fluorescence in drying process. ACS Applied Materials & Interfaces 9 (22):18429–33. doi: 10.1021/acsami.7b03917.
  • Chua, A. C. G., R. M. Graham, D. Trinder, and J. K. Olynyk. 2007. The regulation of cellular iron metabolism. Critical Reviews in Clinical Laboratory Sciences 44 (5–6):413–59. doi: 10.1080/10408360701428257.
  • Fuchs, A. C. D. 2023. Specific, sensitive, and quantitative protein detection by in-gel fluorescence. Nature Communications 14 (1):2505. doi: 10.1038/s41467-023-38147-8.
  • Huang, S., W. Li, X. Zhou, M. Xie, Q. Luo, H. Wen, Y. Luo, and W. Xue. 2020. One-step synthesis of levodopa functionalized carbon quantum dots for selective detection of tyrosinase and inhibitor screening. Microchemical Journal 159:105456. doi: 10.1016/j.microc.2020.105456.
  • Jiao, Y., X. Gong, H. Han, Y. Gao, W. Lu, Y. Liu, M. Xian, S. Shuang, and C. Dong. 2018. Facile synthesis of orange fluorescence carbon quantum dots with excitation independent emission for pH sensing and cellular imaging. Analytica Chimica Acta 1042:125–32. doi: 10.1016/j.aca.2018.08.044.
  • Jomova, K., and M. Valko. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 (2–3):65–87. doi: 10.1016/j.tox.2011.03.001.
  • Li, B., H. Ma, B. Zhang, J. Qian, T. Cao, H. Feng, W. Li, Y. Dong, and W. Qin. 2019. Dually emitting carbon quantum dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury (II), chloride and chromate (VI) via different mechanisms. Microchimica Acta 186 (6):1–10. doi: 10.1007/s00604-019-3437-2.
  • Li, F., J. Wang, Y. Lai, C. Wu, S. Sun, Y. He, and H. Ma. 2013. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosensors & Bioelectronics 39 (1):82–7. doi: 10.1016/j.bios.2012.06.050.
  • Li, X., Y. Yin, J. Deng, H. Zhong, J. Tang, Z. Chen, L. Yang, and L. J. Ma. 2016. A solvent-dependent fluorescent detection method for Fe3+ and Hg2+ based on a rhodamine B derivative. Talanta 154:329–34. doi: 10.1016/j.talanta.2016.03.090.
  • Lim, S. Y., W. Shen, and Z. Gao. 2015. Carbon quantum dots and their applications. Chemical Society Reviews 44 (1):362–81. doi: 10.1039/c4cs00269e.
  • Liu, A., H. Cai, Y. Zeng, Y. Chen, X. Yu, J. Song, P. Zeng, J. Qu, J. Guo, and H. Li. 2022. Nitrogen-doped carbon quantum dots with high selectivity for hydrosulfide sensing and their living cells imaging. Analytica Chimica Acta 1225:340202. doi: 10.1016/j.aca.2022.340202.
  • Liu, Y., Z. Chen, W. Li, C. Ma, P. Wu, X. Wu, S. Li, and S. Liu. 2018. A nanocomposite probe consisting of carbon quantum dots and phosphotungstic acid for fluorometric determination of chromate (VI) with improved selectivity. Microchimica Acta 185:470–79.doi: 10.1007/s00604-018-2993-1.
  • Pang, S., and S. Liu. 2020. Dual-emission carbon quantum dots for ratiometric detection of Fe3+ ions and acid phosphatase. Analytica Chimica Acta 1105:155–61. doi: 10.1016/j.aca.2020.01.033.
  • Sherman, H. G., C. Jovanovic, S. Stolnik, K. Baronian, A. J. Downard, and F. J. Rawson. 2018. New perspectives on iron uptake in eukaryotes. Frontiers in Molecular Biosciences 5:97. doi: 10.3389/fmolb.2018.00097.
  • Shi, B., Y. Su, L. Zhang, M. Huang, R. Liu, and S. Zhao. 2016. Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe3+ in Human Serum and Living Cells. ACS Applied Materials & Interfaces 8 (17):10717–25. doi: 10.1021/acsami.6b01325.
  • Singh, A., S. Sinha, R. Kaur, N. Kaur, and N. Singh. 2014. Rhodamine based organic nanoparticles for sensing of Fe3+ with high selectivity in aqueous medium: Application to iron supplement analysis. Sensors and Actuators B: Chemical 204:617–21. doi: 10.1016/j.snb.2014.08.028.
  • Singh, A., G. Singh, N. Kaur, and N. Singh. 2023. Fabrication of FR-ET based nano sensor from biomass-derived fluorescent carbon quantum dots and naphthalimide for ratiometric detection of nitric oxide: To examine nitrite levels in meat samples. Analytica Chimica Acta 1270:341444. doi: 10.1016/j.aca.2023.341444.
  • Sonaimuthu, M., S. Ganesan, S. Anand, A. J. Kumar, S. Palanisamy, S. You, K. Velsankar, S. Sudhahar, H. M. Lo, and Y. R. Lee. 2023. Multiple heteroatom dopant carbon quantum dots as a novel photoluminescent probe for the sensitive detection of Cu2+ and Fe3+ ions in living cells and environmental sample analysis. Environmental Research 219:115106. doi: 10.1016/j.envres.2022.115106.
  • Vedamalai, M., A. P. Periasamy, C. W. Wang, Y. T. Tseng, L. C. Ho, C. C. Shih, and H. T. Chang. 2014. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6 (21):13119–25. doi: 10.1039/c4nr03213f.
  • Wang, R., F. Yu, P. Liu, and L. Chen. 2012. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells. Chemical Communications (Cambridge, England) 48 (43):5310–2. doi: 10.1039/c2cc31426f.
  • Wu, J., and E. A. Boyle. 1998. Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg (OH)2 coprecipitation. Analytica Chimica Acta 367 (1–3):183–91. doi: 10.1016/S0003-2670(98)00145-7.
  • Zhang, J., Z. Li, X. Tian, and N. Ding. 2019. A novel hydrosoluble near-infrared fluorescent probe for specifically monitoring tyrosinase and application in a mouse model. Chemical Communications (Cambridge, England) 55 (64):9463–6. doi: 10.1039/c9cc04714j.
  • Zhu, S., Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang. 2015. The photoluminescence mechanism in carbon quantum dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Research 8 (2):355–81. doi: 10.1007/s12274-014-0644-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.