184
Views
0
CrossRef citations to date
0
Altmetric
Fluorescence

Determination of Melamine by Label-Free Ratiometric Fluorescence Using the Inner-Filter Effect (IFE) between Cadmium Tellurium/Cadmium Sulfide Quantum Dots (QDs) and Gold Nanoparticles (Au NPs)

, , &
Pages 1959-1973 | Received 07 Aug 2023, Accepted 08 Nov 2023, Published online: 30 Nov 2023

References

  • Al-Hashimi, B. R., K. M. Omer, H. S. Rahman, and H. H. Othman. 2021. Inner filter effect as a sensitive sensing platform for detection of nitrofurantoin using luminescent drug-based carbon nanodots. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 244:118835. doi:10.1016/j.saa.2020.118835.
  • Cao, H., W. Dong, T. Wang, W. Shi, C. Fu, and Y. Wu. 2020. Aptasensor based on MoS2 quantum dots with upconversion fluorescence for microcystin-LR detection via the inner filter effect. ACS Sustainable Chemistry & Engineering 8 (29):10939–46. doi:10.1021/acssuschemeng.0c03388.
  • Cao, X., F. Shen, M. Zhang, J. Guo, Y. Luo, X. Li, H. Liu, C. Sun, and J. Liu. 2013. Efficient inner filter effect of gold nanoparticles on the fluorescence of CdS quantum dots for sensitive detection of melamine in raw milk. Food Control.34 (1):221–9. doi:10.1016/j.foodcont.2013.04.016.
  • Chen, X. Y., W. Ha, and Y. P. Shi. 2019. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Talanta 194:475–84. doi:10.1016/j.talanta.2018.10.070.
  • Chen, Q., M. Qie, X. Peng, Y. Chen, and Y. Wang. 2020. Immunochromatographic assay for melamine based on luminescent quantum dot beads as signaling probes. RSC Advances 10 (6):3307–13. doi:10.1039/c9ra08350b.
  • Deng, Z., O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu. 2010. Aqueous synthesis of zinc blende CdTeCdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. Journal of the American Chemical Society 132 (16):5592–3. doi:10.1021/ja101476b.
  • Du, J., Z. Wang, X. Peng, and J. Fan. 2015. In-situ colorimetric recognition of melamine based on. Industrial & Engineering Chemistry Research 54 (48):12011–6. doi:10.1021/acs.iecr.5b02399.
  • Feng, J., X. Wang, S. Han, X. Ji, C. Li, C. Luo, and M. Sun. 2019. An ionic-liquid-modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Mikrochimica Acta 186 (12):769. doi:10.1007/s00604-019-3909-4.
  • Guo, M., S. Liu, M. Wang, Y. Lv, J. Shi, Y. Zeng, J. Ye, and Q. Chu. 2020. Double surfactants-assisted electromembrane extraction of cyromazine and melamine in surface water, soil and cucumber samples followed by capillary electrophoresis with contactless conductivity detection. Journal of the Science of Food and Agriculture 100 (1):301–7. doi:10.1002/jsfa.10039.
  • Kalaiyarasan, G., K. Anusuya, and J. Joseph. 2017. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula. Applied Surface Science 420:963–9. doi:10.1016/j.apsusc.2017.05.193.
  • Kumar, N., H. Kumar, B. Mann, and R. Seth. 2016. Colorimetric determination of melamine in milk using unmodified silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 156:89–97. doi:10.1016/j.saa.2015.11.028.
  • Kumar, N., R. Seth, and H. Kumar. 2014. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Analytical Biochemistry 456:43–9. doi:10.1016/j.ab.2014.04.002.
  • Liang, L., S. Zhen, and C. Huang. 2017. Visual and light scattering spectrometric method for the detection of melamine using uracil 5'-triphosphate sodium modified gold nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 173:99–104. doi:10.1016/j.saa.2016.08.049.
  • Li, Z., Y. Li, L. Li, and T. Wang. 2019. Aquamarine blue emitting silver nanoparticles as fluorescent sensor for melamine detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 217:51–9. doi:10.1016/j.saa.2019.03.051.
  • Li, H., J. Somerson, F. Xia, and K. W. Plaxco. 2018. Electrochemical DNA-based sensors for molecular quality control: Continuous, real-time melamine detection in flowing whole milk. Analytical Chemistry 90 (18):10641–5. doi:10.1021/acs.analchem.8b01993.
  • Liu, H., M. Li, Y. Xia, and X. Ren. 2017. A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces 9 (1):120–6. doi:10.1021/acsami.6b11920.
  • Lu, H., S. Quan, and S. Xu. 2017. Highly sensitive ratiometric fluorescent sensor for trinitrotoluene based on the inner filter effect between gold nanoparticles and fluorescent nanoparticles. Journal of Agricultural and Food Chemistry 65 (44):9807–14. doi:10.1021/acs.jafc.7b03986.
  • Lu, Q., J. Zhao, S. Xue, P. Yin, Y. Zhang, and S. Yao. 2015. A “turn-on” fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs. The Analyst 140 (4):1155–60. doi:10.1039/c4an01847h.
  • Mahmood, A. S., J. K. Gholamreza, A. Ehsani, S. Nabi, D. M. Hadi, H. Mohammad, H. Hedayat, M. Abdollahi, S. Hassani, Z. Bayrami, et al. 2023. Metal-organic framework fluorescence sensors for rapid and accurate detection of melamine in milk powder. Biosensors 13 (1):2079–6374. doi:10.3390/bios13010094.
  • Molognoni, L., N. C. de Souza, L. A. de Sá Ploêncio, G. A. Micke, and H. Daguer. 2018. Simultaneous analysis of spectinomycin, halquinol, zilpaterol, and melamine in feedingstuffs by ion-pair liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A 1569:110–7. doi:10.1016/j.chroma.2018.07.048.
  • Mu, X., M. Wu, B. Zhang, X. Liu, S. Xu, Y. Huang, X. Wang, D. Song, P. Ma, and Y. Sun. 2021. A sensitive "off-on" carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 221:121463. doi:10.1016/j.talanta.2020.121463.
  • Onac, C., H. Korkmaz Alpoguz, M. Lutfi Yola, and A. Kaya. 2018. Transport of melamine by a new generation of nano-material membranes containing carbon nanotubes and determination with surface plasmon resonance. Innovative Food Science & Emerging Technologies 45:467–70. doi:10.1016/j.ifset.2017.07.003.
  • Paul, I. E., A. Rajeshwari, T. C. Prathna, A. M. Raichur, N. Chandrasekaran, and A. Mukherjee. 2015. Colorimetric detection of melamine based on the size effect of AuNPs. Analytical Methods 7 (4):1453–62. doi:10.1039/C4AY02622E.
  • Qi, W. J., D. Wu, J. Ling, and C. Z. Huang. 2010. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chemical Communications (Cambridge, England) 46 (27):4893–5. doi:10.1039/c0cc00886a.
  • Qu, R., L. Shan, Q. Sun, Y. Wei, P. Deng, and X. Hou. 2021. Quantification of C13, N15 labelled compounds with C13, N15 edited H1 Nuclear Magnetic Resonance spectroscopy. Talanta 224:121839. doi:10.1016/j.Talanta.2020.121839.
  • Radha, R., R. F. Vitor, and M. H. Al-Sayah. 2021. A fluorescence-based chemical sensor for detection of melamine in aqueous solutions. Chemosensors 10 (1):13. doi:10.3390/chemosensors10010013.
  • Sheng, E., Y. Lu, Y. Tan, Y. Xiao, Z. Li, and Z. Dai. 2020. Ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Analytical Chemistry 92 (6):4364–70. doi:10.1021/acs.analchem.9b05199.
  • Siddiquee, S., S. Saallah, N. A. Bohari, G. Ringgit, J. Roslan, L. Naher, and N. F. H. Nudin. 2021. Visual and optical absorbance detection of melamine in milk by melamine-induced aggregation of gold nanoparticles. Nanomaterials (Basel, Switzerland) 11 (5):1142–53. doi:10.3390/nano11051142.
  • Sun, J., J. Zhao, L. Wang, H. Li, F. Yang, and X. Yang. 2018. Inner filter effect-based sensor for horseradish peroxidase and its application to fluorescence immunoassay. ACS Sensors 3 (1):183–90. doi:10.1021/acssensors.7b00830.
  • Truzzi, C., S. Illuminati, C. Finale, A. Annibaldi, C. Lestingi, and G. Scarponi. 2014. Microwave-assisted solvent extraction of melamine from seafood and determination by gas chromatography–mass spectrometry: Optimization by factorial design. Analytical Letters 47 (7):1118–33. doi:10.1080/00032719.2013.865203.
  • Viehrig, M., S. T. Rajendran, K. Sanger, M. S. Schmidt, T. S. Alstrøm, T. Rindzevicius, K. Zór, and A. Boisen. 2020. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk. Analytical Chemistry 92 (6):4317–25. doi:10.1021/acs.analchem.9b05060.
  • Wang, W. F., Y. Qiang, X. H. Meng, J. L. Yang, and Y. P. Shi. 2018. Ultrasensitive colorimetric assay melamine based on in situ reduction to formation of CQDs-silver nanocomposite. Sensors and Actuators B: Chemical 260:808–15. doi:10.1016/j.snb.2018.01.108.
  • Yan, X., H. Li, X. Han, and X. Su. 2015. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosensors & Bioelectronics 74:277–83. doi:10.1016/j.bios.2015.06.020.
  • Yu, C., L. Li, Y. Ding, H. Liu, H. Cui, F. Zhang, J. Lin, and Y. Duan. 2021. A sensitive molecularly imprinted electrochemical aptasensor for highly specific determination of melamine. Food Chemistry 363:130202. doi:10.1016/j.foodchem.2021.130202.
  • Yue, X., Z. Zhou, M. Li, M. Jie, B. Xu, and Y. Bai. 2022. Inner-filter effect induced fluorescent sensor based on fusiform Al-MOF nanosheets for sensitive and visual detection of nitrofuran in milk. Food Chemistry 367:130763. doi:10.1016/j.foodchem.2021.130763.
  • Zhang, L., and L. Chen. 2018. Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchimica Acta 185 (2): 1–9. doi:10.1007/s00604-017-2664-7.
  • Zhang, M., H. Ping, X. Cao, H. Li, F. Guan, C. Sun, and J. Liu. 2012. Rapid determination of melamine in milk using water-soluble CdTe quantum dots as fluorescence probes. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 29 (3):333–44. doi:10.1080/19440049.2011.643459.
  • Zhao, J., H. Wu, J. Jiang, and S. Zhao. 2014. Label free fluorescent turn-on sensing for melamine based on fluorescence resonance energy transfer between CdTe/CdS quantum dots and gold nanoparticles. RSC Advances 4 (106):61667–72. doi:10.1039/C4RA08776C.
  • Zhu, J., H. Chang, J. J. Li, X. Li, and J. W. Zhao. 2017. Dual-mode melamine detection based on gold nanoparticlesaggregation-induced fluorescence “turn-on” and “turn-off” of CdTequantum dots. Sensors and Actuators B: Chemical 239:906–15. doi:10.1016/j.snb.2016.08.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.