65
Views
0
CrossRef citations to date
0
Altmetric
Nanotechnology

Carbon Dot-Gold Nanoparticles Ensemble for Specific Visual Iodide Recognition

, &
Pages 1974-1988 | Received 16 Aug 2023, Accepted 10 Nov 2023, Published online: 22 Nov 2023

References

  • Bartl, J., L. Reinke, M. Koch, and S. Kubik. 2020. Selective sensing of sulfate anions in water with cyclopeptide-decorated gold nanoparticles. Chemical Communications (Cambridge, England) 56 (72):10457–60. doi: 10.1039/D0CC04796A.
  • Bizhanova, A., and P. Kopp. 2009. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150 (3):1084–90. doi: 10.1210/en.2008-1437.
  • Cao, M., X. Ye, Y. Liu, P. Zhang, and Z. Zhang. 2023. Spectrophotometric and colorimetric trivalent chromium ions detection in aqueous solution based on citrate-capped gold nanoparticles. Chemical Papers 77 (8):4719–25. doi: 10.1007/s11696-023-02788-2.
  • Chen, Z., Y. Niu, G. Cheng, L. Tong, G. Zhang, F. Cai, T. Chen, B. Liu, and B. Tang. 2017. A fast, highly sensitive and selective assay of iodide ions with single-stranded DNA-templated copper nanoparticles as a fluorescent probe for its application in Kunming mice samples. The Analyst 142 (15):2781–5. doi: 10.1039/c7an00595d.
  • Cheng, W. L., S. J. Dong, and E. K. Wang. 2003. Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angewandte Chemie (International ed. in English) 42 (4):449–52. doi: 10.1002/anie.200390136.
  • Choi, H., S. J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J. W. Jung, H. J. Choi, M. Cha, J. R. Jeong, et al. 2013. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics 7 (9):732–8. doi: 10.1038/nphoton.2013.181.
  • Daniel, W. L., M. S. Han, J. S. Lee, and C. A. Mirkin. 2009. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. Journal of the American Chemical Society 131 (18):6362–3. doi: 10.1021/ja901609k.
  • Dey, D., T. Bhattacharya, B. Majumdar, S. Mandani, B. Sharma, and T. K. Sarma. 2013. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation. Dalton Transactions (Cambridge, England: 2003) 42 (38):13821–5. doi: 10.1039/c3dt51234g.
  • Đorđević, L., F. Arcudi, M. Cacioppo, and M. Prato. 2022. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology 17 (2):112–30. doi: 10.1038/s41565-021-01051-7.
  • Du, J. J., Q. Shao, S. Y. Yin, L. Jiang, J. Ma, and X. D. Chen. 2012. Colorimetric chemodosimeter based on diazonium-gold-nanoparticle complexes for sulfite ion detection in solution. Small (Weinheim an Der Bergstrasse, Germany) 8 (22):3412–6. doi: 10.1002/smll.201201650.
  • Harisha, K. S., B. Narayana, and Y. Sangappa. 2023. Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles. Journal of Dispersion Science and Technology 44 (1):132–43. doi: 10.1080/01932691.2021.1931286.
  • Harisha, K. S., N. Parushuram, R. Ranjana, J. M. Lavita, M. O. Samir, B. Narayana, and Y. Sangappa. 2022. Biosynthesized unmodified silver nanoparticles: A colorimetric optical sensor for detection of Hg2+ ions in aqueous solution. Results in Chemistry 4:100507. doi: 10.1016/j.rechem.2022.100507.
  • Ibba, F., G. Pupo, A. L. Thompson, J. M. Brown, T. D. W. Claridge, and V. Gouverneur. 2020. Impact of multiple hydrogen bonds with fluoride on catalysis: Insight from NMR spectroscopy. Journal of the American Chemical Society 142 (46):19731–44. doi: 10.1021/jacs.0c09832.
  • Jia, Y., W. Zheng, X. Zhao, J. Zhang, W. Chen, and X. Jiang. 2018. Mixing-to-answer iodide sensing with commercial chemicals. Analytical Chemistry 90 (13):8276–82. doi: 10.1021/acs.analchem.8b02126.
  • Jiang, K., X. Gao, X. Feng, Y. Wang, Z. Li, and H. Lin. 2020. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angewandte Chemie (International ed. in English) 59 (3):1263–9. doi: 10.1002/anie.201911342.
  • Jiang, R., Y. Zhang, Q. Zhang, L. Li, and L. Yang. 2021. Carbon dot/gold nanocluster-based fluorescent colorimetric paper strips for quantitative detection of iodide ions in urine. ACS Applied Nano Materials 4 (9):9760–7. doi: 10.1021/acsanm.1c02167.
  • Kaur, B., C. A. Erdmann, M. Daniëls, W. Dehaen, Z. Rafiński, H. Radecka, and J. Radecki. 2017. Highly sensitive electrochemical sensor for the detection of anions in water based on a redox-active monolayer incorporating an anion receptor. Analytical Chemistry 89 (23):12756–63. doi: 10.1021/acs.analchem.7b03001.
  • Kim, J. Y., J. Yeom, G. Zhao, H. Calcaterra, J. Munn, P. Zhang, and N. Kotov. 2019. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. Journal of the American Chemical Society 141 (30):11739–44. doi: 10.1021/jacs.9b00700.
  • Lee, G. P., Y. Shi, E. Lavoie, T. Daeneke, P. Reineck, U. B. Cappel, D. M. Huang, and U. Bach. 2013. Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano 7 (7):5911–21. doi: 10.1021/nn4013059.
  • Lee, S. A., and S. Link. 2021. Chemical interface damping of surface plasmon resonances. Accounts of Chemical Research 54 (8):1950–60. doi: 10.1021/acs.accounts.0c00872.
  • Liu, R., H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, and Z. Kang. 2014. Metal nanoparticle/carbon quantum dot composite as a photocatalst for high-efficiency cyclohexane oxidation. ACS Catalysis 4 (1):328–36. doi: 10.1021/cs400913h.
  • Lu, M., H. Zhu, C. G. Bazuin, W. Peng, and J. F. Masson. 2019. Polymer-templated gold nanoparticles on optical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors. ACS Sensors 4 (3):613–22. doi: 10.1021/acssensors.8b01372.
  • Luo, P. H., C. Li, and G. Q. Shi. 2012. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics: PCCP 14 (20):7360–6. doi: 10.1039/c2cp40767a.
  • Meng, X., B. Lei, N. Qi, and B. Wang. 2022. The selective detection of Fe3+ ions using citrate-capped gold nanoparticles. Analytical Biochemistry 637:114453. doi: 10.1016/j.ab.2021.114453.
  • Pike, S. J., J. J. Hutchinson, and C. A. Hunter. 2017. H-bond acceptor parameters for anions. Journal of the American Chemical Society 139 (19):6700–6. doi: 10.1021/jacs.7b02008.
  • Ranjana, R., N. Parushuram, K. S. Harisha, S. Asha, and Y. Sangappa. 2020. Silk fibroin a bio-template for synthesis of different shaped gold nanoparticles: Characterization and ammonia detection application. Materials Today: Proceedings 27 (1):434–9. doi: 10.1016/j.matpr.2019.11.259.
  • Ren, H., T. Li, R. Ling, J. Bi, C. Zhang, Z. Wu, and W. Qin. 2019. Rational calibration strategy for accurate and sensitive colorimetric detection of iodide and L-thyroxine based on gold triangular nanoplates. ACS Sustainable Chemistry & Engineering 7 (18):15230–7. doi: 10.1021/acssuschemeng.9b02129.
  • Shen, L. M., M. L. Chen, L. L. Hu, X. W. Chen, and J. H. Wang. 2013. Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir: The ACS Journal of Surfaces and Colloids 29 (52):16135–40. doi: 10.1021/la404270w.
  • Shen, L. M., Q. Chen, Z. Y. Sun, X. W. Chen, and J. H. Wang. 2014. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Analytical Chemistry 86 (10):5002–8. doi: 10.1021/ac500601k.
  • Shim, H., M. H. Kim, and Y. Kim. 2022. Highly selective colorimetric sensing for iodide in water based on a novel surface passivation of Ag nanoprisms. Dyes and Pigments 200:110177. doi: 10.1016/j.dyepig.2022.110177.
  • Singh, A., A. Torres-Huerta, T. Vanderlinden, N. Renier, L. Martínez-Crespo, N. Tumanov, J. Wouters, K. Bartik, I. Jabin, and H. Valkenier. 2022. Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters. Chemical Communications (Cambridge, England) 58 (42):6255–8. doi: 10.1039/d2cc00847e.
  • Sun, C., and M. Gradzielski. 2021. Fluorescence sensing of cyanide anions based on Au-modified upconversion nanoassemblies. The Analyst 146 (7):2152–9. doi: 10.1039/d0an01954b.
  • Wareing, T. C., P. Gentile, and A. N. Phan. 2021. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 15 (10):15471–501. doi: 10.1021/acsnano.1c03886.
  • Wen, Q., W. Cheng, M. Yan, Y. Liu, Z. Zhang, Y. Xie, D. Shao, and X. Lu. 2022. Bismuth coordinates with iodine atoms to form chemical bonds for existing stabilization in boron glass. Inorganic Chemistry 61 (26):9860–7. doi: 10.1021/acs.inorgchem.1c03680.
  • Wu, X., E. N. W. Howe, and P. A. Gale. 2018. Supramolecular transmembrane anion transport: New assays and insights. Accounts of Chemical Research 51 (8):1870–9. doi: 10.1021/acs.accounts.8b00264.
  • Xu, D., Q. Lin, and H. T. Chang. 2020. Recent advances and sensing applications of carbon dots. Small Methods.4 (4):1900387. doi: 10.1002/smtd.201900387.
  • Yuan, F., Y. K. Wang, G. Sharma, Y. Dong, X. Zheng, P. Li, A. Johnston, G. Bappi, J. Z. Fan, H. Kung, et al. 2020. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics 14 (3):171–6. doi: 10.1038/s41566-019-0557-5.
  • Zhang, J., X. W. Xu, C. Yang, F. Yang, and X. R. Yang. 2011a. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Analytical Chemistry 83 (10):3911–7. doi: 10.1021/ac200480r.
  • Zhang, J., X. W. Xu, Y. Yuan, C. Yang, and X. R. Yang. 2011b. A Cu@Au nanoparticle-based colorimetric competition assay for the detection of sulfide anion and cysteine. ACS Applied Materials & Interfaces 3 (8):2928–31. doi: 10.1021/am2007678.
  • Zhang, J., X. W. Xu, and X. R. Yang. 2012a. Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. The Analyst 137 (7):1556–8. doi: 10.1039/c2an16307a.
  • Zhang, J., X. L. Wang, and X. R. Yang. 2012b. Colorimetric determination of hypochlorite with unmodified gold nanoparticles through the oxidation of a stabilizer thiol compound. The Analyst 137 (12):2806–12. doi: 10.1039/c2an35239g.
  • Zhang, J., Y. Yuan, G. Liang, and S. H. Yu. 2015. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 2 (4):1500002. doi: 10.1002/advs.201500002.
  • Zhang, J., Y. Yuan, M. Gao, Z. Han, C. Chu, Y. Li, P. C. M. van Zijl, M. Ying, J. W. M. Bulte, and G. Liu. 2019. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angewandte Chemie (International ed. in English) 58 (29):9871–5. doi: 10.1002/anie.201904722.
  • Zhu, Z., Y. Z. Zhai, P. Li, S. Zhu, C. Mao, D. Zhu, L. A. Du, L. A. Belfiore, J. Tang, and Y. Lin. 2019. Red carbon dots: Optical property regulations and applications. Materials Today 30:52–79. doi: 10.1016/j.mattod.2019.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.