105
Views
1
CrossRef citations to date
0
Altmetric
Plasma Spectroscopy

Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing

, , , , , , , & show all
Pages 2004-2017 | Received 11 Oct 2023, Accepted 13 Nov 2023, Published online: 19 Nov 2023

References

  • Ali, K., D. P. Wijayanti, H. Kurniawan, and T. Sakka. 2023. Elemental characterization of Indonesian coral skeleton using underwater laser-induced breakdown spectroscopy (LIBS), X-ray fluorescence spectroscopy (XRF), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Analytical Letters:1–12. doi:10.1080/00032719.2023.2242537.
  • Benallal H., Y. Mourchid I. Abouelaziz A. Al Falou H. Tairi J. Riffi, and M. El Hassouni. 2022. A new approach for removing point cloud outliers using box plot. In Pattern Recognition and Tracking XXXIII. Vol. 12101, 63–69. doi:10.1117/12.2618842.
  • Cama-Moncunill, X., M. Markiewicz-Keszycka, P. J. Cullen, C. Sullivan, and M. P. Casado-Gavalda. 2020. Direct analysis of calcium in liquid infant formula via laser-induced breakdown spectroscopy (LIBS). Food Chemistry 309:125754. doi:10.1016/j.foodchem.2019.125754.
  • Dyar, M. D., C. I. Fassett, S. Giguere, K. Lepore, S. Byrne, T. Boucher, C. J. Carey, and S. Mahadevan. 2016. Comparison of univariate and multivariate models for prediction of major and minor elements from laser-induced breakdown spectra with and without masking. Spectrochimica Acta Part B: Atomic Spectroscopy 123:93–104. doi:10.1016/j.sab.2016.07.010.
  • Fu, Y. T., W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang. 2021. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Frontiers of Physics 16 (2):22502. doi:10.1007/s11467-020-1006-0.
  • Gazeli, O., D. Stefas, and S. Couris. 2021. Sulfur detection in soil by laser induced breakdown spectroscopy assisted by multivariate analysis. Materials (Basel, Switzerland) 14 (3):541. doi:10.3390/ma14030541.
  • Gondal, M. A., T. Hussain, Z. H. Yamani, and M. A. Baig. 2006. Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy. Talanta 69 (5):1072–8. doi:10.1016/j.talanta.2005.11.023.
  • Harmon, R. S., and G. S. Senesi. 2021. Laser-induced breakdown spectroscopy – a geochemical tool for the 21st century. Applied Geochemistry 128:104929. doi:10.1016/j.apgeochem.2021.104929.
  • Huang, W. H., L. B. Guo, W. P. Kou, D. Zhang, Z. L. Hu, F. Chen, Y. W. Chu, and W. Cheng. 2022. Identification of adulterated milk powder based on convolutional neural network and laser-induced breakdown spectroscopy. Microchemical Journal 176:107190. doi:10.1016/j.microc.2022.107190.
  • Ji, G. L., P. C. Ye, Y. J. Shi, L. M. Yuan, X. J. Chen, M. S. Yuan, D. H. Zhu, X. Chen, X. Y. Hu, and J. Jiang. 2017. Laser-induced breakdown spectroscopy for rapid discrimination of heavy-metal-contaminated seafood Tegillarca granosa. Sensors (Basel, Switzerland) 17 (11):2655. doi:10.3390/s17112655.
  • Jia, J. W., H. B. Fu, Z. Y. Hou, H. D. Wang, Z. B. Ni, and F. Z. Dong. 2019. Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy. Plasma Science and Technology 21 (3):034003. doi:10.1088/2058-6272/aae3e1.
  • Kashiwakura, S., and K. Wagatsuma. 2020. Selection of atomic emission lines on the mutual identification of austenitic stainless steels with a combination of laser-induced breakdown spectroscopy (LIBS) and partial-least-square regression (PLSR). ISIJ International 60 (6):1245–53. doi:10.2355/isijinternational.ISIJINT-2019-549.
  • Lee, Y., R. I. Foster, H. Kim, and S. Choi. 2023. Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions. Analytica Chimica Acta 1241:340804. doi:10.1016/j.aca.2023.340804.
  • Liu, R. W., P. Chen, Z. Z. Wang, K. Rong, J. J. Yan, J. P. Liu, and Y. Deguchi. 2021. Quantitative analysis of carbon content in fly ash using LIBS based on support vector regression. Advanced Powder Technology 32 (8):2978–87. doi:10.1016/j.apt.2021.06.010.
  • Liu, J. M., D. Wu, C. L. Fu, R. Hai, X. Yu, L. Y. Sun, and H. B. Ding. 2019. Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments. Plasma Science and Technology 21 (3):034017. doi:10.1088/2058-6272/aaf821.
  • Long, J., C. Y. Sun, N. Y. Yan, C. H. Yan, L. Qu, Q. Wang, S. R. Zhang, and L. Ma. 2023. Discrimination of Salvia miltiorrhiza from Different Geographical Origins by Laser-Induced Breakdown Spectroscopy (LIBS) with Convolutional Neural Network (CNN). Analytical Letters 56 (16):2625–36. doi:10.1080/00032719.2023.2180515.
  • Ministry of Natural Resources PRC. 2020. China mineral resources 2022. 1st ed. Beijing: Geological Publishing House.
  • Mukhono, P. M., K. H. Angeyo, A. Dehayem-Kamadjeu, and K. A. Kaduki. 2013. Laser induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics. Spectrochimica Acta Part B: Atomic Spectroscopy 87:81–5. doi:10.1016/j.sab.2013.05.031.
  • Ning, X. R., I. W. Selesnick, and L. Duval. 2014. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometrics and Intelligent Laboratory Systems 139:156–67. doi:10.1016/j.chemolab.2014.09.014.
  • Popov, A. M., T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Kal’Ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev. 2014. Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry. Journal of Analytical Atomic Spectrometry 29 (10):1925–33. doi:10.1039/C4JA00199K.
  • Senesi, G. S., I. Allegretta, B. S. Marangoni, M. C. S. Ribeiro, C. Porfido, R. Terzano, O. De Pascale, and G. Eramo. 2023. Geochemical identification and classification of cherts using handheld laser induced breakdown spectroscopy (LIBS) supported by supervised machine learning algorithms. Applied Geochemistry 151:105625. doi:10.1016/j.apgeochem.2023.105625.
  • Song, W. R., Z. Y. Hou, M. S. Afgan, W. L. Gu, H. Wang, J. C. Cui, Z. Wang, and Y. Wang. 2021. Validated ensemble variable selection of laser-induced breakdown spectroscopy data for coal property analysis. Journal of Analytical Atomic Spectrometry 36 (1):111–9. doi:10.1039/D0JA00386G.
  • Teklemariam, T. A., and J. Gotera. 2019. Application of laser induced breakdown spectroscopy in food container glass discrimination. Spectrochimica Acta Part B: Atomic Spectroscopy 155:34–43. doi:10.1016/j.sab.2019.03.005.
  • Traparić, I., and M. Ivković. 2023. Determination of austenitic steel alloys composition using laser-induced breakdown spectroscopy (LIBS) and machine learning algorithms. The European Physical Journal D 77 (2):30. doi:10.1140/epjd/s10053-023-00608-6.
  • Umar, Z. A., U. Liaqat, R. Ahmed, R. Hedwig, M. Ramli, M. A. Marpaung, K. H. Kurniawan, M. Pardede, and M. A. Baig. 2022. Determination of micronutrients and toxic elements in Moringa Oleifera leaves by calibration free laser-induced breakdown spectroscopy (LIBS). Analytical Letters 55 (5):755–69. doi:10.1080/00032719.2021.1966794.
  • Velásquez, M., J. Álvarez, C. Sandoval, E. Ramírez, M. Bravo, R. Fuentes, A. K. Myakalwar, R. Castillo, D. Luarte, D. Sbarbaro, et al. 2022. Improved elemental quantification in copper ores by laser-induced breakdown spectroscopy with judicious data processing. Spectrochimica Acta Part B: Atomic Spectroscopy 188:106343. doi:10.1016/j.sab.2021.106343.
  • Wang, Y. Z., Y. L. Ni, S. Lu, J. G. Wang, and X. Y. Zhang. 2019. Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony. IEEE Transactions on Vehicular Technology 68 (10):9543–53. doi:10.1109/TVT.2019.2932605.
  • Winefordner, J. D., I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto. 2004. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. Journal of Analytical Atomic Spectrometry 19 (9):1061–83. doi:10.1039/b400355c.
  • Xu, B. P., S. M. Liu, B. Y. Lei, Y. H. Liu, W. F. Zhang, J. Tang, Y. S. Wang, W. Zhao, and Y. X. Duan. 2022. A hybrid method combining discharge-assisted laser induced breakdown spectroscopy with wavelet transform for trace elemental analysis in liquid targets. Journal of Analytical Atomic Spectrometry 37 (6):1350–9. doi:10.1039/D2JA00140C.
  • Yang, J. H., C. C. Yi, J. W. Xu, and X. H. Ma. 2015. A laser induced breakdown spectroscopy quantitative analysis method based on the robust least squares support vector machine regression model. Journal of Analytical Atomic Spectrometry 30 (7):1541–51. doi:10.1039/C5JA00009B.
  • Yang, L., Y. H. Zhang, J. M. Liu, Z. Zhang, M. J. Xu, F. Ji, J. J. Chen, T. D. Zhang, and R. S. Lu. 2022. Spectral preprocessing to improve accuracy of quantitative detection of elemental Cr in austenitic stainless steel by laser-induced breakdown spectroscopy. The Review of Scientific Instruments 93 (3):033002. doi:10.1063/5.0067518.
  • Yin, Y. S., X. Y. Zhang, A. Li, J. Lyu, L. X. Zhong, and R. B. Liu. 2023. High-precision and rapid in situ ore element detection based on laser-induced breakdown spectroscopy. The Journal of Physical Chemistry C 127 (26):12655–61. doi:10.1021/acs.jpcc.3c02990.
  • Zhang, Z. M., S. Chen, and Y. Z. Liang. 2010. Baseline correction using adaptive iteratively reweighted penalized least squares. The Analyst 135 (5):1138–46. doi:10.1039/b922045c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.