40
Views
0
CrossRef citations to date
0
Altmetric
Clinical Analysis

Classification between Viable and Non-Viable Influenza A Virus and Differentiation of H1N1 and H3N2 Subtypes with a Propidium Monoazide xx (PMAxx) Based Loop-Mediated Isothermal Amplification (LAMP) Assay

, , , , , , , , & show all
Pages 2400-2411 | Received 02 Nov 2023, Accepted 15 Dec 2023, Published online: 25 Dec 2023

References

  • Alger, K., H. Ip, J. Hall, S. Nashold, K. Richgels, and C. Smith. 2019. Inactivation of viable surrogates for the select agents virulent Newcastle disease virus and highly pathogenic avian influenza virus using either commercial lysis buffer or heat. Applied Biosafety 24 (4):189–99. doi: 10.1177/1535676019888920.
  • Allen, J. D., and T. M. Ross. 2018. H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation. Human Vaccines & Immunotherapeutics 14 (8):1840–7. doi: 10.1080/21645515.2018.1462639.
  • Bos, D. A. G., K. Lagrou, and J. Y. Verbakel. 2023. Prospective performance evaluation of the miDiagnostics COVID-19 PCR test for rapid SARS-CoV-2 detection on nasopharyngeal swabs. Journal of Clinical Microbiology 61 (5):e0187122. doi: 10.1128/jcm.01871-22.
  • Bouju-Albert, A., S. Saltaji, X. Dousset, H. Prévost, and E. Jaffrès. 2021. Quantification of Viable Brochothrix thermosphacta in Cold-Smoked Salmon Using PMA/PMAxx-qPCR. Frontiers in Microbiology 12:654178.doi: 10.3389/fmicb.2021.654178.
  • Brauge, T., G. Midelet-Bourdin, and C. Soumet. 2019. Viability detection of foodborne bacterial pathogens in food environment by PMA-qPCR and by microscopic observation. Methods in Molecular Biology (Clifton, N.J.) 1918:117–28. doi: 10.1007/978-1-4939-9000-9-9.
  • Brown, J. R., J. W. Tang, L. Pankhurst, N. Klein, V. Gant, K. M. Lai, J. McCauley, and J. Breuer. 2015. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling. The Journal of Hospital Infection 91 (3):278–81. doi: 10.1016/j.jhin.2015.08.004.
  • Cenciarini-Borde, C., S. Courtois, and B. La Scola. 2009. Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiology 4 (1):45–64. doi: 10.2217/17460913.4.1.45.
  • Cordes, R. J., and M. E. Ryan. 1995. Pitfalls in HIV testing-application and limitation of current tests. Postgraduate Medicine 98 (5):177–89. doi: 10.1080/00325481.1995.11946078.
  • Coudray-Meunier, C., A. Fraisse, S. Martin-Latil, L. Guillier, and S. Perelle. 2013. Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology 13:216. doi: 10.1186/1471-2180-13-216.
  • Elizaquível, P., R. Aznar, and G. Sánchez. 2014. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. Journal of Applied Microbiology 116 (1):1–13. doi: 10.1111/jam.12365.
  • Fittipaldi, M., A. Nocker, and F. Codony. 2012. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods 91 (2):276–89. doi: 10.1016/j.mimet.2012.08.007.
  • Gharabaghi, F., R. Tellier, R. Cheung, C. Collins, G. Broukhanski, S. J. Drews, and S. E. Richardson. 2008. Comparison of a commercial qualitative real-time RT-PCR kit with direct immunofluorescence assay (DFA) and cell culture for detection of influenza A and B in children. Journal of Clinical Virology 42 (2):190–3. doi: 10.1016/j.jcv.2008.01.013.
  • Gora, I. M., M. Kwasnik, J. F. Zmudzinski, and W. Rozek. 2019. Chorioallantoic membranes of embryonated chicken eggs as an alternative system for isolation of equine influenza virus. Virology Journal 14 (1):120. doi: 10.1186/s12985-017-0788-3.
  • Grabowska, I., K. Malecka, U. Jarocka, J. Radecki, and H. Radecka. 2014. Electrochemical biosensors for detection of avian influenza virus-current status and future trends. Acta Biochimica Polonica 61 (3):471–8. doi: 10.18388/abp.2014_1866.
  • Habibi, N., S. Uddin, M. Behbehani, N. Abdul Razzack, F. Zakir, and A. Shajan. 2022. SARS-CoV-2 in hospital air as revealed by comprehensive respiratory viral panel sequencing. Infection Prevention in Practice 4 (1):100199. doi: 10.1016/j.infpip.2021.100199.
  • Hasegawa, T., S. Shibayama, Y. Osumi, H. Sentsui, and M. Kato. 2023. Quantitative performance of digital ELISA for the highly sensitive quantification of viral proteins and influenza virus. Analytical and Bioanalytical Chemistry 415 (10):1897–904. doi: 10.1007/s00216-023-04600-2.
  • Irkham, I., A. U. Ibrahim, C. W. Nwekwo, F. Al-Turjman, and Y. W. Hartati. 2022. Current technologies for detection of covid-19: biosensors, artificial intelligence and internet of medical things (IoMT): Review. Sensors (Basel, Switzerland) 23 (1):426. doi: 10.3390/s23010426.
  • Krammer, F., G. J. D. Smith, R. A. M. Fouchier, M. Peiris, K. Kedzierska, P. C. Doherty, P. Palese, M. L. Shaw, J. Treanor, R. G. Webster, et al. 2018. Influenza. Nature Reviews Disease Primers 4 (1):3. doi: 10.1038/s41572-018-0002-y.
  • Lenkowski, M., K. Nijakowski, M. Kaczmarek, and A. Surdacka. 2021. The loop-mediated isothermal amplification technique in periodontal diagnostics: A systematic review. Journal of Clinical Medicine 10 (6):1189. doi: 10.3390/jcm10061189.
  • Leung, N. H. L., J. Zhou, D. K. W. Chu, H. Yu, W. G. Lindsley, D. H. Beezhold, H. L. Yen, Y. G. Li, W. H. Seto, J. S. M. Peiris, et al. 2016. Quantification of influenza virus RNA in aerosols in patient rooms. PLoS One 11 (2):e0148669. doi: 10.1371/journal.pone.0148669.
  • Mallick, S., R. P. Singh, J. K. Biswal, J. K. Mohapatra, M. Rout, R. Samanta, S. A. Khulape, and R. Ranjan. 2023. Production and characterization of monoclonal antibodies against foot-and-mouth disease virus serotype O and development of a sandwich ELISA for virus antigen detection. Veterinary Research Communications 47 (4):1915–24. doi: 10.1007/s11259-023-10143-9.
  • Melidou, A., C. Ködmön, K. Nahapetyan, A. Kraus, E. Alm, C. Adlhoch, P. Mooks, N. Dave, C. Carvalho, M. M. Meslé, et al. 2022. Influenza returns with a season dominated by clade 3c.2a1b.2a.2A(H3N2) viruses, WHO European region, 2021/22. Euro Surveillance 27 (15):2200255. doi: 10.2807/1560-7917.ES.2022.27.15.2200255.
  • Moehling, T. J., G. Choi, L. C. Dugan, M. Salit, and R. J. Meagher. 2021. LAMP diagnostics at the point-of-care: Emerging trends and perspectives for the developer community. Expert Review of Molecular Diagnostics 21 (1):43–61. doi: 10.1080/14737159.2021.1873769.
  • Moreno, L., R. Aznar, and G. Sánchez. 2015. Application of viability PCR to discriminate the infectivity of hepatitis A virus in food samples. International Journal of Food Microbiology 201:1-6. doi: 10.1016/j.ijfoodmicro.2015.02.012. 25720326.
  • Peeling, R. W., D. L. Heymann, Y. Y. Teo, and P. J. Garcia. 2022. Diagnostics for COVID-19: Moving from pandemic response to control. Lancet (London, England) 399 (10326):757–68. doi: 10.1016/S0140-6736(21)02346-1.
  • Randazzo, W., M. Khezri, J. Ollivier, F. S. Le Guyader, J. Rodríguez-Díaz, R. Aznar, and G. Sánchez. 2018. Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology 266:1-7. doi: 10.1016/j.ijfoodmicro.2017.11.011. 29156242.
  • Ravina M., H. Mohan, J. Narang, S. Pundir, C. S. Pundir. 2021. A changing trend in diagnostic methods of influenza A (H3N2) virus in human: A review. Biotechnology Journal 11 (2):87. doi: 10.1007/s13205-021-02642-w.
  • Rolando, J. C., E. Jue, N. G. Schoepp, and R. F. Ismagilov. 2019. Real-time, digital LAMP with commercial microfluidic chips reveals the interplay of efficiency, speed, and background amplification as a function of reaction temperature and time. Analytical Chemistry 91 (1):1034–42. doi: 10.1021/acs.analchem.8b04324.
  • Sánchez, G., P. Elizaquível, and R. Aznar. 2012. Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR. Food and Environmental Virology 4 (1):21–5. doi: 10.1007/s12560-011-9074-5. 23412764.
  • Shao, H., J. Li, J. Zhang, Q. Zhang, L. Ma, J. Lu, T. Li, Q. Xie, Z. Wan, A. Qin, et al. 2023. Research Note: A novel peptide-based ELISA for efficient detection of antibody against chicken infectious anemia virus. Poultry Science 102 (1):102284. doi: 10.1016/j.psj.2022.102284.
  • Tang, J. W., P. Wilson, N. Shetty, and C. J. Noakes. 2015. Aerosol-transmitted infections-a new consideration for public health and infection control teams. Current Treatment Options in Infectious Diseases 7 (3):176–201. doi: 10.1007/s40506-015-0057-1.
  • Thompson, C. M., E. Petiot, A. Lennaertz, O. Henry, and A. A. Kamen. 2013. Analytical technologies for influenza virus-like particle candidate vaccines: Challenges and emerging approaches. Virology Journal 10 (1):141. doi: 10.1186/1743-422X-10-141.
  • van Frankenhuyzen, J. K., J. T. Trevors, H. Lee, C. A. Flemming, and M. B. Habash. 2011. Molecular pathogen detection in biosolids with a focus on quantitative PCR using propidium monoazide for viable cell enumeration. Journal of Microbiological Methods 87 (3):263–72. doi: 10.1016/j.mimet.2011.09.007.
  • Wallace, L. A., K. A. McAulay, J. D. M. Douglas, A. G. Elder, D. J. Stott, and W. F. Carman. 1999. Influenza diagnosis: From dark isolation into the molecular light. The Journal of Infection 39 (3):221–6. doi: 10.1016/S0163-4453(99)90053-1.
  • Yadegari, H., M. Mohammadi, F. Maghsood, A. Ghorbani, T. Bahadori, F. Golsaz-Shirazi, A. H. Zarnani, V. Salimi, M. Jeddi-Tehrani, M. M. Amiri, et al. 2023. Diagnostic performance of a novel antigen-capture ELISA for the detection of SARS-CoV-2. Analytical Biochemistry 666:115079. doi: 10.1016/j.ab.2023.115079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.