56
Views
0
CrossRef citations to date
0
Altmetric
Spectrophotometry

Discrimination of the Specific Gravity of Urine Using Spectrophotometry by the Parallel Connection of Two Modified Feature Selection Methods

, , , , , , , , , ORCID Icon & show all
Received 28 Nov 2023, Accepted 17 Jan 2024, Published online: 30 Jan 2024

References

  • Abha, K., J. Nebu, J. S. Anjali, R. S. Aparna, R. R. Anjana, A. O. Aswathy, and S. George. 2019. Photoluminescence sensing of bilirubin in human serum using l-cysteine tailored manganese doped zinc sulphide quantum dots. Sensors and Actuators B: Chemical 282:300–8. doi: 10.1016/j.snb.2018.11.063.
  • An, H., C. Zhai, F. Zhang, Q. Ma, J. Sun, Y. Tang, and W. Wang. 2023. Quantitative analysis of chinese steamed bread staling using NIR, MIR, and Raman spectral data fusion. Food Chemistry 405 (Pt A):134821. doi: 10.1016/j.foodchem.2022.134821.
  • Bender, B. F., N. J. Johnson, J. A. Berry, K. M. Frazier, and M. B. Bender. 2022. Automated urinal-based specific gravity measurement device for real-time hydration monitoring in male athletes. Frontiers in Sports and Active Living 4:921418. doi: 10.3389/fspor.2022.921418.
  • Castro, W., M. De-la-Torre, H. Avila-George, J. Torres-Jimenez, A. Guivin, and B. Acevedo-Juárez. 2022. Amazonian cacao-clone nibs discrimination using NIR spectroscopy coupled to naïve bayes classifier and a new waveband selection approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 270:120815. doi: 10.1016/j.saa.2021.120815.
  • Chen, R. 2023. Determination of fatty acid of wheat by near-infrared spectroscopy with combined feature selection based on CARS and NSGA-III. Infrared Physics & Technology 129:104572. doi: 10.1016/j.infrared.2023.104572.
  • Chen, Y., Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng. 2016. Fiber-optic urine specific gravity sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical 226:412–8. doi: 10.1016/j.snb.2015.09.056.
  • Coppens, A., M. Speeckaert, and J. Delanghe. 2010. The Pre-analytical challenges of routine urinalysis. Acta Clinica Belgica 65 (3):182–9. doi: 10.1179/acb.2010.038.
  • Ding, D., H. Yu, Y. Yin, Y. Yuan, Z. Li, and F. Li. 2022. Determination of chlorophyll and hardness in cucumbers by raman spectroscopy with successive projections algorithm (SPA)-extreme learning machine (ELM). Analytical Letters 56 (8):1216–28. doi: 10.1080/00032719.2022.2123922.
  • dos Santos, G. L. A. A., A. S. Reis, M. R. Besen, R. H. Furlanetto, M. Rodrigues, L. G. T. Crusiol, K. M. de Oliveira, R. Falcioni, R. B. de Oliveira, M. A. Batista, et al. 2023. Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression. European Journal of Agronomy 143:126717. doi: 10.1016/j.eja.2022.126717.
  • Ersoy, N., G. Ersoy, and M. Kutlu. 2016. Assessment of hydration status of elite young male soccer players with different methods and new approach method of substitute urine strip. Journal of the International Society of Sports Nutrition 13 (1):34. doi: 10.1186/s12970-016-0145-8.
  • Esteki, M., S. Nouroozi, S. Amanifar, and Z. Shahsavari. 2017. A simple and highly densitive method for quantitative detection of methyl paraben and phenol in cosmetics using derivative spectrophotometry and multivariate chemometric techniques. Journal of the Chinese Chemical Society 64 (2):152–63. doi: 10.1002/jccs.201600104.
  • Galvão, R. K. H., M. C. U. Araujo, G. E. José, M. J. C. Pontes, E. C. Silva, and T. C. B. Saldanha. 2005. A method for calibration and validation subset partitioning. Talanta 67 (4):736–40. doi: 10.1016/j.talanta.2005.03.025.
  • Gani, W., and M. Limam. 2016. A kernel distance-based representative subset selection method. Journal of Statistical Computation and Simulation 86 (1):135–48. doi: 10.1080/00949655.2014.996758.
  • Gao, S., and J. Xu. 2022. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes. Computers and Electronics in Agriculture 196:106822. doi: 10.1016/j.compag.2022.106822.
  • Guo, Z., C. Guo, Q. Chen, Q. Ouyang, J. Shi, H. R. El-Seedi, and X. Zou. 2020. Classification for penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics. Sensors (Basel, Switzerland) 20 (7):2130. doi: 10.3390/s20072130.
  • He, Y., X. Xue, R. Terkeltaub, N. Dalbeth, T. R. Merriman, D. B. Mount, Z. Feng, X. Li, L. Cui, Z. Liu, et al. 2022. Association of acidic urine pH with impaired renal function in primary gout patients: A Chinese population-based cross-sectional study. Arthritis Research & Therapy 24 (1):32. doi: 10.1186/s13075-022-02725-w.
  • Jiang, W., C. Lu, Y. Zhang, W. Ju, J. Wang, and M. Xiao. 2019. Molecular spectroscopic wavelength selection using combined interval partial least squares and correlation coefficient optimization. Analytical Methods 11 (24):3108–16. doi: 10.1039/C9AY00898E.
  • Jiang, W., C. Lu, Y. Zhang, W. Ju, J. Wang, F. Hong, T. Wang, and C. Ou. 2020. Moving-window-improved Monte Carlo uninformative variable elimination combining successive projections algorithm for near-infrared spectroscopy (NIRS). Journal of Spectroscopy 2020:1–12. doi: 10.1155/2020/3590301.
  • Li, X., M. Cai, M. Li, X. Wei, Z. Liu, J. Wang, K. Jia, and Y. Han. 2023. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken. Food Control 145:109416. doi: 10.1016/j.foodcont.2022.109416.
  • Liu, W., L. Liu, and Q. Yu. 2009. Net analyte signal calculation in Near-Infrared spectra calibration. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 1–4. doi: 10.1109/ICBBE.2009.5163099.
  • Liu, Z., R. Zhang, C. Yang, B. Hu, X. Luo, Y. Li, and C. Dong. 2022. Research on moisture content detection method during green tea processing based on machine vision and near-infrared spectroscopy technology. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 271:120921. doi: 10.1016/j.saa.2022.120921.
  • Liu, Z., S. Yang, Y. Wang, and J. Zhang. 2021. Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 258:119872. doi: 10.1016/j.saa.2021.119872.
  • Niemi, C., A. M. Mortensen, R. Rautenberger, S. Matsson, A. Gorzsás, and F. G. Gentili. 2023. Rapid and accurate determination of protein content in North Atlantic seaweed by NIR and FTIR spectroscopies. Food Chemistry 404 (Pt B):134700. doi: 10.1016/j.foodchem.2022.134700.
  • Ogawa, M., Y. Yamakoshi, K. Motoi, T. Yamakoshi, and K. I. Yamakoshi. 2009. Preliminary study on near-infrared spectroscopic measurement of urine hippuric acid for the screening of biological exposure index. Fifth International Symposium on Instrumentation Science and Technology, 7133, 848–853. doi: 10.1117/12.821245.
  • Pan, S., X. Zhang, W. Xu, J. Yin, H. Gu, and X. Yu. 2022. Rapid on-site identification of geographical origin and storage age of tangerine peel by near-infrared spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 271:120936. doi: 10.1016/j.saa.2022.120936.
  • Pang, L., L. Wang, P. Yuan, L. Yan, and J. Xiao. 2022. Rapid seed viability prediction of Sophora japonica by improved successive projection algorithm and hyperspectral imaging. Infrared Physics & Technology 123:104143. doi: 10.1016/j.infrared.2022.104143.
  • Prakash, S., S. K. Panigrahi, R. P. Dorner, M. Wagner, W. Schmidt, and A. K. Mishra. 2021. Understanding the photophysics of stercobilin-Zn(II) and urobilin-Zn(II) complexes towards faecal pigment analysis. Chemosphere 265:129189. doi: 10.1016/j.chemosphere.2020.129189.
  • Raypah, M. E., L. J. Zhi, L. Z. Loon, and A. F. Omar. 2022. Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey. Chemometrics and Intelligent Laboratory Systems 224:104540. doi: 10.1016/j.chemolab.2022.104540.
  • Shao, Y., Y. Li, L. Jiang, J. Pan, Y. He, and X. Dou. 2016. Identification of pesticide varieties by detecting characteristics of chlorella pyrenoidosa using visible/near infrared hyperspectral imaging and Raman microspectroscopy technology. Water Research 104:432–40. doi: 10/f89fb6.
  • Song, W., Z. Hou, M. S. Afgan, W. Gu, H. Wang, J. Cui, Z. Wang, and Y. Wang. 2021. Validated ensemble variable selection of laser-induced breakdown spectroscopy data for coal property analysis. Journal of Analytical Atomic Spectrometry 36 (1):111–9. doi: 10.1039/D0JA00386G.
  • Sun, Z., J. Fan, J. Wang, F. Wang, L. Nie, L. Li, Q. Dong, C. Li, R. Du, S. Quan, et al. 2020. Assessment of the human albumin in acid precipitation process using NIRS and multi-variable selection methods combined with SPA. Journal of Molecular Structure 1199:126942. doi: 10.1016/j.molstruc.2019.126942.
  • Suzuki, I., M. Ogawa, K. Seino, M. Nogawa, H. Naito, K. Yamakoshi, and S. Tanaka. 2018. Reagentless estimation of urea and creatinine concentrations using near-infrared spectroscopy for spot urine test of urea-to-creatinine ratio. Advanced Biomedical Engineering 7:72–81. doi: 10.14326/abe.7.72.
  • Suzuki, I., M. Ogawa, K. Seino, M. Nogawa, H. Naito, K. Yamakoshi, and S. Tanaka. 2020. NIR spectroscopic determination of urine components in spot urine: Preliminary investigation towards optical point-of-care test. Medical & Biological Engineering & Computing 58 (1):67–74. doi: 10.1007/s11517-019-02063-1.
  • Tanaka, S., Y. Hayakawa, M. Ogawa, and K. Yamakoshi. 2010. Development of a near-infrared spectroscopic system for monitoring urine glucose level for the use of long-term home healthcare. Sixth International Symposium on Precision Engineering Measurements and Instrumentation, 7544, 345–350. doi: 10.1117/12.886007.
  • Tang, G., Y. Huang, K. Tian, X. Song, H. Yan, J. Hu, Y. Xiong, and S. Min. 2014. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm. The Analyst 139 (19):4894–902. doi: 10.1039/c4an00837e.
  • Webb, M. C., S. T. Salandy, and S. E. Beckford. 2016. Monitoring hydration status pre- and post-training among university athletes using urine color and weight loss indicators. Journal of American College Health: J of ACH 64 (6):448–55. doi: 10.1080/07448481.2016.1179195.
  • Wyness, S. P., J. J. H. Hunsaker, T. M. Snow, and J. R. Genzen. 2016. Evaluation and analytical validation of a handheld digital refractometer for urine specific gravity measurement. Practical Laboratory Medicine 5:65–74. doi: 10.1016/j.plabm.2016.06.001.
  • Xia, C., Y. Xu, M. M. Cao, Y. P. Liu, J. F. Xia, D. Y. Jiang, G. H. Zhou, R. J. Xie, D. F. Zhang, and H. L. Li. 2020. A selective and sensitive fluorescent probe for bilirubin in human serum based on Europium(III) post-functionalized Zr(IV)-Based MOFs. Talanta 212:120795. doi: 10.1016/j.talanta.2020.120795.
  • Xu, S., Y. Zhao, M. Wang, and X. Shi. 2017. Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques. CATENA 157:12–23. doi: 10.1016/j.catena.2017.05.008.
  • Yang, C., Z. Cai, Q. Li, F. Tang, J. Wu, J. Yang, Y. Zhang, B. Li, P. Yang, X. Ye, et al. 2023. Rapid discrimination of urine specific gravity using spectroscopy and a modified combination methodbased on SPA and spectral index. Journal of Biophotonics 17(1):e202300323. doi: 10.1002/jbio.202300323.
  • Yang, S., H. Zhang, and W. Fan. 2022. Characteristic wavelengths selection of rice spectrum based on adaptive sliding window permutation entropy. Food Science and Technology 42:e38922. doi: 10.1590/fst.38922.
  • You, H., Y. Kim, J. H. Lee, B. J. Jang, and S. Choi. 2017. Food powder classification using a portable visible-near-infrared spectrometer. Journal of Electromagnetic Engineering and Science 17 (4):186–90. doi: 10.26866/jees.2017.17.4.186.
  • Yuan, H., C. Liu, H. Wang, L. Wang, and L. Dai. 2022. PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 271:120887. doi: 10.1016/j.saa.2022.120887.
  • Zhang, J., X. Cui, W. Cai, and X. Shao. 2018. Combination of heuristic optimal partner bands for variable selection in near-infrared spectral analysis. Journal of Chemometrics 32 (11):e2971. doi: 10.1002/cem.2971.
  • Zhang, N., X. Zhang, G. Yang, C. Zhu, L. Huo, and H. Feng. 2018. Assessment of defoliation during the dendrolimus tabulaeformis Tsai Et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sensing of Environment 217:323–39. doi: 10.1016/j.rse.2018.08.024.
  • Zhang, X. W., Z. G. Chen, and F. Jiao. 2023. Application of the combination method based on RF and LE in near infrared spectral modeling. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 289:122247. doi: 10.1016/j.saa.2022.122247.
  • Zhu, M., J. Xia, X. Jin, M. Yan, G. Cai, J. Yan, and G. Ning. 2018. Class weights random forest algorithm for processing class unbalanced medical data. IEEE Access 6:4641–52. doi: 10.1109/ACCESS.2018.2789428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.