136
Views
0
CrossRef citations to date
0
Altmetric
Pharmaceutical Analysis

Ultraviolet Photodegradation of Ciprofloxacin Using Zinc Oxide and Iron-Doped Zinc Oxide (Fe-ZnO) Nanoparticles (NPs): Kinetic and Isotherm Measurements

, , , , , , , , , , , , & show all
Received 05 Dec 2023, Accepted 31 Jan 2024, Published online: 14 Feb 2024

References

  • Ahmadzadeh, A., A. Asadipour, M. Pournamdari, B. Behnam, H. R. Rahimi, and M. Dolatabadi. 2017. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection 109:538–47. doi:10.1016/j.psep.2017.04.026.
  • Carmen, M. S., J. Luis, M. Julia, A. Irene, and A. Esteban. 2023. Automatised on-line SPE-chiral LC-MS/MS method for the enantiomeric determination of main fluoroquinolones and their metabolites in environmental water samples. Microchemical Journal 185:108217.
  • Ciciliati, M. A., M. F. Silva, D. M. Fernandes, M. A. de Melo, A. A. W. Hechenleitner, and E. A. Pineda. 2015. Fe-ZnO nanopa9rticles: Synthesis by a modified sol–gel method and characterization. Materials Letters 159:84–6. doi:10.1016/j.matlet.2015.06.023.
  • Cini, N., and A. Gölcü. 2021. Spectrophotometric methodologies applied for determination of pharmaceuticals. Current Analytical Chemistry 17 (8):1141–68. doi:10.2174/1573411016999200526133357.
  • Darvishi, C. S., R. A. Rezaee, M. Safari, A. R. Khataee, and B. Karimi. 2015. Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalination and Water Treatment 53 (6):1613–20. doi:10.1080/19443994.2013.855674.
  • Do, B. V., H. A. Nguyen, T. L. Nguyen, T. T. H. Vu, Q. H. Le, H. P. Pham, T. T. Ta, and T. H. Y. Pham. 2023. Voltammetric determination of a fluoroquinolone antibiotic based on multilayer reduced graphene oxide sensor prepared directly, promptly by electrochemically expanding graphite electrode surface. International Journal of Environmental Analytical Chemistry 103 (19):8141–57. doi:10.1080/03067319.2021.1982924.
  • El-Shafey, E.-S I., H. Al-Lawati, and A. S. Al-Sumri. 2012. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. Journal of Environmental Sciences (China) 24 (9):1579–86. doi:10.1016/s1001-0742(11)60949-2.
  • Farzadkia, M., A. Esrafili, M. A. Baghapour, Y. D. Shahamat, and N. Okhovat. 2014. Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalination and Water Treatment 52 (25-27):4947–52. doi:10.1080/19443994.2013.810322.
  • Gothwal, R., and T. Shashidhar. 2015. Antibiotic pollution in the environment: A review. CLEAN – Soil, Air, Water 43 (4):479–89. doi:10.1002/clen.201300989.
  • Guo, H., N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, and Y. Wu. 2019. Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system. Applied Catalysis B: Environmental 248:552–66. doi:10.1016/j.apcatb.2019.01.052.
  • Hassani, A., A. Khataee, and S. Karaca. 2015. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. Journal of Molecular Catalysis A: Chemical 409:149–61. doi:10.1016/j.molcata.2015.08.020.
  • Hoseinpour, V. M., Souri, N. G., and A. Shakeri. 2017. Optimization of green synthesis of ZnO nanoparticles by Dittrichia graveolens (L.) aqueous extract. Health Biotechnology Biopharmacy 1:39–49.
  • Jiaheng, J., J. Wang, F. Ouyang, Z. Zheng, X. Huang, H. Zhang, D. He, S. He, H. Wei, and C.-Y. Yu. 2023. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin. Analytica Chimica Acta 1279:341837. doi:10.1016/j.aca.2023.341837.
  • Kanchana, S., M. J. Chithra, S. Ernest, and K. Pushpanathan. 2016. Violet emission from Fe doped ZnO nanoparticles synthesized by preciprofloxacinitation method. Journal of Luminescence 176:6–14. doi:10.1016/j.jlumin.2015.12.047.
  • Karthik, R., J. Vinoth Kumar, S.-M. Chen, C. Karuppiah, Y.-H. Cheng, and V. Muthuraj. 2017. A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Applied Materials & Interfaces 9 (7):6547–59. doi:10.1021/acsami.6b14242.
  • Kaur, K., A. Kumar, A. K. Malik, B. Singh, and A. Rao. 2008. Spectrophotometric methods for the determination of fluoroquinolones: A review. Critical Reviews in Analytical Chemistry 38 (1):2–18. doi:10.1080/10408340701804400.
  • Malakootian, M., H. Mahdizadeh, A. Dehdarirad, and M. Amiri Gharghani. 2019. Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones. Journal of Dispersion Science and Technology 40 (6):846–54. doi:10.1080/01932691.2018.1485580.
  • Malakootian, M., A. Nasiri, and M. Amiri Gharaghani. 2020. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chemical Engineering Communications 207 (1):56–72. doi:10.1080/00986445.2019.1573168.
  • Malakootian, M., A. Nasiri, A. Asadipour, and E. Kargar. 2019. Facile and green synthesis of ZnFe2O4@ CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Safety and Environmental Protection 129:138–51. doi:10.1016/j.psep.2019.06.022.
  • Pandit, V. U., S. S. Arbuj, Y. B. Pandit, S. D. Naik, S. B. Rane, U. P. Mulik, S. W. Gosavi, and B. B. Kale. 2015. Solar light driven dye degradation using novel organo–inorganic (6, 13-pentacenequinone/TiO2) nanocomposite. RSC Advances 5 (14):10326–31. doi:10.1039/C4RA11920G.
  • Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. Byrne, K. O’Shea, et al. 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 125:331–49. doi:10.1016/j.apcatb.2012.05.036.
  • Rehman, S., R. Ullah, A. Butt, and N. Gohar. 2009. Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials 170 (2-3):560–9. doi:10.1016/j.jhazmat.2009.05.064.
  • Saleh, R., and N. F. Djaja. 2014. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 130:581–90. doi:10.1016/j.saa.2014.03.089.
  • Sankar, P. R. K. D., D. P. S. Babu, G. Rachana, A. S. Geethika, and J. Bhargavi. 2019. Development and validation of a stability-indicating method for assay of moxifloxacin in oral pharmaceutical dosage forms by HPLC. IOSR Journal of Pharmacy 9:30–41.
  • Schneider, M. J. 2009. Methods for the analysis of fluoroquinolones in biological fluids. Bioanalysis 1 (2):415–35. doi:10.4155/bio.09.37.
  • Seddigi, Z. S., S. A. Ahmed, A. Bumajdad, E. Y. Danish, A. M. Shawky, M. A. Gondal, and M. Soylak. 2015. The efficient photocatalytic degradation of methyl tert‐butyl ether under Pd/ZnO and visible light irradiation. Photochemistry and Photobiology 91 (2):265–71. doi:10.1111/php.12391.
  • Shah, J., M. R. Jan, I. Ullah, and S. Shah. 2013. Sensitive spectrofluorimetric method for determination of fluoroquinolones through charge-transfer complex formation. American Journal of Analytical Chemistry 04 (10):521–30. doi:10.4236/ajac.2013.410066.
  • Thi, V. H.-T, and B.-K. Lee. 2017. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Materials Research Bulletin 96:171–82. doi:10.1016/j.materresbull.2017.04.028.
  • Van Doorslaer, X., K. Demeestere, P. M. Heynderickx, H. Van Langenhove, and J. Dewulf. 2011. Ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption. Applied Catalysis B: Environmental 101 (3-4):540–7. doi:10.1016/j.apcatb.2010.10.027.
  • Wu, S., H. Hu, Y. Lin, J. Zhang, and Y. H. Hu. 2020. Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal 382:122842. doi:10.1016/j.cej.2019.122842.
  • Wu, J., J. Wang, Z. Li, S. Guo, K. Li, P. Xu, Y. S. Ok, D. L. Jones, and J. Zou. 2023. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Critical Reviews in Environmental Science and Technology 53 (7):847–64. doi:10.1080/10643389.2022.2094693.
  • Yu, X., J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, and B. Yao. 2019. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chemical Engineering Journal 374:316–27. doi:10.1016/j.cej.2019.05.177.
  • Zainal, Z., L. K. Hui, M. Z. Hussein, A. H. Abdullah, and I. M. K. R. Hamadneh. 2009. Characterization of TiO2–chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. Journal of Hazardous Materials 164 (1):138–45. doi:10.1016/j.jhazmat.2008.07.154.
  • Zhang, Z., H. Zhang, D. Tian, A. Phan, M. Seididamyeh, M. Alanazi, Z. Ping Xu, Y. Sultanbawa, and R. Zhang. 2024. Luminescent sensors for residual antibiotics detection in food: Recent advances and perspectives. Coordination Chemistry Reviews 498:215455. doi:10.1016/j.ccr.2023.215455.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.