21
Views
0
CrossRef citations to date
0
Altmetric
Spectrophotometry

Bimetallic CuFe Prussian Blue Analogue Nanocubes as a Colorimetric Probe for the Quantification of Glutathione

, , , &
Received 01 Mar 2024, Accepted 08 May 2024, Published online: 21 May 2024

References

  • Baghayeri, M., A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser. 2018. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sensors and Actuators B: Chemical 273:1442–50. doi: 10.1016/j.snb.2018.07.063.
  • Chen, G. Y., T. Q. Chai, H. Zhang, and F. Q. Yang. 2024. Applications of mild-condition synthesized metal complexes with enzyme-like activity in the colorimetric and fluorescence analysis. Coordination Chemistry Reviews 508:215761. doi: 10.1016/j.ccr.2024.215761.
  • Dong, Z., L. Feng, Y. Chao, Y. Hao, M. Chen, F. Gong, X. Han, R. Zhang, L. Cheng, and Z. Liu. 2019. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Letters 19 (2):805–15. doi: 10.1021/acs.nanolett.8b03905.
  • Du, M., P. Geng, C. Pei, X. Jiang, Y. Shan, W. Hu, L. Ni, and H. Pang. 2022. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angewandte Chemie (International ed. in English) 61 (41):e202209350. doi: 10.1002/anie.202209350.
  • Du, Z., X. Wang, X. Zhang, Z. Gu, X. Fu, S. Gan, T. Fu, S. Xie, and W. Tan. 2023. X-ray-triggered carbon monoxide and manganese dioxide generation based on scintillating nanoparticles for cascade cancer radiosensitization. Angewandte Chemie (International ed. in English) 62 (23):e202302525. doi: 10.1002/anie.202302525.
  • Gan, Z., T. Zhang, X. An, Q. Tan, S. Zhen, Y. Hu, and X. Hu. 2022. Dual enzyme-mimicking fluorescent amino terephthalic acid/CuFe/adenosine triphosphate nanoparticles for determination of H2O2 and ascorbic acid. Microchemical Journal 182:107939. doi: 10.1016/j.microc.2022.107939.
  • Halawa, M. I., F. Wu, M. N. Zafar, I. M. Mostafa, A. Abdussalam, S. Han, and G. Xu. 2020. Turn-on fluorescent glutathione detection based on lucigenin and MnO2 nanosheets. Journal of Materials Chemistry. B 8 (16):3542–9. doi: 10.1039/c9tb02158b.
  • Huang, W., H. Li, L. Yu, Y. Lin, Y. T. Lei, L. Jin, H. L. Yu, and Y. He. 2021c. Imaging adsorption of iodide on single Cu2O microparticles reveals the acid activation mechanism. Journal of Hazardous Materials 420:126539. doi: 10.1016/j.jhazmat.2021.126539.
  • Huang, Y., and S. Ren. 2021b. Multifunctional Prussian blue analogue magnets: Emerging opportunities. Applied Materials Today 22:100886. doi: 10.1016/j.apmt.2020.100886.
  • Huang, M., Y. Wang, M. Song, and F. Chen. 2021a. Bovine serum albumin-encapsulated gold nanoclusters-Cu2+ synergize and promote calcein chemiluminescence for glutathione detection in human whole blood. Microchemical Journal 170:106749. doi: 10.1016/j.microc.2021.106749.
  • Jin, P., X. Niu, F. Zhang, K. Dong, H. Dai, H. Zhang, W. Wang, H. Chen, and X. Chen. 2020. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Applied Materials & Interfaces 12 (18):20414–22. doi: 10.1021/acsami.0c01763.
  • Kim, K. 2021. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants 10 (7):1011. doi: 10.3390/antiox10071011.
  • Lai, X., Y. Shen, S. Gao, Y. Chen, Y. Cui, D. Ning, X. Ji, Z. Liu, and L. Wang. 2022. The Mn-modified porphyrin metal-organic framework with enhanced oxidase-like activity for sensitively colorimetric detection of glutathione. Biosensors & Bioelectronics 213:114446. doi: 10.1016/j.bios.2022.114446.
  • Li, L., Q. Wang, and Z. Chen. 2019. Colorimetric detection of glutathione based on its inhibitory effect on the peroxidase-mimicking properties of WS2 nanosheets. Mikrochimica Acta 186 (4):257. doi: 10.1007/s00604-019-3365-1.
  • Lin, L., D. Chen, C. Lu, and X. Wang. 2022. Fluorescence and colorimetric dual-signal determination of Fe3+ and glutathione with MoSe2@Fe nanozyme. Microchemical Journal 177:107283. doi: 10.1016/j.microc.2022.107283.
  • Liu, T., Y. Yue, Y. Zhai, Z. Guo, W. Zhao, X. Yang, D. Chen, and C. Yin. 2021. Host-guest type multiple site fluorescent probe for GSH detection in living organisms. Chemical Communications (Cambridge, England)57 (100):13764–7. doi: 10.1039/d1cc05494e.
  • Mohammadpour, Z., F. M. Jebeli, and S. Ghasemzadeh. 2021. Peroxidase-mimetic activity of FeOCl nanosheets for the colorimetric determination of glutathione and cysteine. Mikrochimica Acta 188 (7):239. doi: 10.1007/s00604-021-04903-0.
  • Ni, P., Y. Sun, H. Dai, J. Hu, S. Jiang, Y. Wang, and Z. Li. 2015. Highly sensitive and selective colorimetric detection of glutathione based on Ag[I] ion-3,3',5,5'-tetramethylbenzidine (TMB). Biosensors & Bioelectronics 63:47–52. doi: 10.1016/j.bios.2014.07.021.
  • Sánchez-Illana, Á., F. Mayr, D. Cuesta-García, J. D. Piñeiro-Ramos, A. Cantarero, M. d l Guardia, M. Vento, B. Lendl, G. Quintás, and J. Kuligowski. 2018. On-capillary surface-enhanced Raman spectroscopy: Determination of glutathione in whole blood Microsamples. Analytical Chemistry 90 (15):9093–100. doi: 10.1021/acs.analchem.8b01492.
  • Shang, H., X. Zhang, M. Ding, A. Zhang, and C. Wang. 2023. A smartphone-assisted colorimetric and photothermal probe for glutathione detection based on enhanced oxidase-mimic CoFeCe three-atom nanozyme in food. Food Chemistry 423:136296. doi: 10.1016/j.foodchem.2023.136296.
  • Sharifi-Rad, M., N. V. Anil Kumar, P. Zucca, E. M. Varoni, L. Dini, E. Panzarini, J. Rajkovic, P. V. Tsouh Fokou, E. Azzini, I. Peluso, et al. 2020. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology 11:694. doi: 10.3389/fphys.2020.00694.
  • Simpson, D. S. A., and P. L. Oliver. 2020. Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 9 (8):743. doi: 10.3390/antiox9080743.
  • Song, C., W. Ding, W. Zhao, H. Liu, J. Wang, Y. Yao, and C. Yao. 2020. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosensors & Bioelectronics 151:111983. doi: 10.1016/j.bios.2019.111983.
  • Sun, J., F. Liu, W. Yu, Q. Jiang, J. Hu, Y. Liu, F. Wang, and X. Liu. 2019. Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots. Nanoscale 11 (11):5014–20. doi: 10.1039/c8nr09801h.
  • Tsiasioti, A., A. S. Zotou, and P. D. Tzanavaras. 2021. Single run analysis of glutathione and its disulfide in food samples by liquid chromatography coupled to on-line post-column derivatization. Food Chemistry 361:130173. doi: 10.1016/j.foodchem.2021.130173.
  • Vázquez-González, M., R. M. Torrente-Rodríguez, A. Kozell, W.-C. Liao, A. Cecconello, S. Campuzano, J. M. Pingarrón, and I. Willner. 2017. Mimicking peroxidase activities with Prussian blue nanoparticles and their cyanometallate structural analogues. Nano Letters 17 (8):4958–63. doi: 10.1021/acs.nanolett.7b02102.
  • Wang, J. L., T. Q. Chai, L. X. Chen, G. Y. Chen, H. Chen, and F. Q. Yang. 2024. Manganese coordination polymer nanoparticles with excellent oxidase-like activity for the rapidly and selectively colorimetric detection of glutathione. Microchemical Journal 199:110207. doi: 10.1016/j.microc.2024.110207.
  • Wang, W., M. Dahl, and Y. Yin. 2013. Hollow nanocrystals through the nanoscale Kirkendall effect. Chemistry of Materials 2013, 25 (8):1179–89. doi: 10.1021/cm3030928.
  • Wang, J. Y., W. Y. Li, and Y. Q. Zheng. 2019. Nitro-functionalized metal-organic frameworks with catalase mimic properties for glutathione detection. The Analyst 144 (20):6041–7. doi: 10.1039/c9an00813f.
  • Wang, D., Y. Meng, Y. Zhang, Q. Wang, W. Lu, S. Shuang, and C. Dong. 2022. A specific discriminating GSH from Cys/Hcy fluorescence nanosensor: The carbon dots-MnO2 nanocomposites. Sensors and Actuators B: Chemical 367:132135. doi: 10.1016/j.snb.2022.132135.
  • Wei, C., C. Cheng, J. Wang, H. Liu, Z. Jiang, W. Du, L. Liu, and C. Hou. 2021. Template-engaged redox etching strategy synthesis of α-MnO2 hollow architectures toward colorimetric glutathione sensing. Applied Surface Science 563:150319. doi: 10.1016/j.apsusc.2021.150319.
  • Wu, W. T., X. Chen, Y. T. Jiao, W. T. Fan, Y. L. Liu, and W. H. Huang. 2022. Versatile construction of biomimetic nanosensors for electrochemical monitoring of intracellular glutathione. Angewandte Chemie (International ed. in English)61 (15):e202115820. doi: 10.1002/anie.202115820.
  • Xing, X., Y. Song, W. Jiang, and X. Zhang. 2020. CuFe-P from a Prussian blue analogue as an electrocatalyst for efficient full water splitting. Sustainable Energy & Fuels 4 (8):3985–91. doi: 10.1039/D0SE00402B.
  • Yi, H., R. Qin, S. Ding, Y. Wang, S. Li, Q. Zhao, and F. Pan. 2020. Structure and properties of Prussian blue analogues in energy storage and conversion applications. Advanced Functional Materials 31 (6):2006970. doi: 10.1002/adfm.202006970.
  • Yin, G., Y. Gan, H. Jiang, T. Yu, M. Liu, Y. Zhang, H. Li, P. Yin, and S. Yao. 2021. Direct quantification and visualization of homocysteine, cysteine, and glutathione in Alzheimer’s and Parkinson’s disease model tissues. Analytical Chemistry 93 (28):9878–86. doi: 10.1021/acs.analchem.1c01945.
  • Zhao, Y., B. Liang, X. Wei, K. Li, C. Lv, and Y. Zhao. 2019. A core-shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization. Journal of Materials Chemistry A 7 (17):10464–74. doi: 10.1039/C8TA12433G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.