46
Views
0
CrossRef citations to date
0
Altmetric
Sensors

Selective Determination of Nicotinamide Adenine Dinucleotide (NADH) on Screen-Printed Polyethylene Terephthalate (PET) Electrodes Modified with a Reduced Graphene Oxide (rGO), Gold Nanoparticle (AuNP), and Poly-Methylene Blue Nanocomposite

&
Received 09 Apr 2024, Accepted 13 May 2024, Published online: 03 Jun 2024

References

  • Berger, F., M. H. Ramírez-Hernández, and M. Ziegler. 2004. The new life of a centenarian: Signalling functions of NAD(P). Trends in Biochemical Sciences 29 (3):111–8. doi: 10.1016/j.tibs.2004.01.007.
  • Bilgi, M., E. M. Sahin, and E. Ayranci. 2018. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. Journal of Electroanalytical Chemistry 813:67–74. doi: 10.1016/j.jelechem.2018.02.012.
  • Chen, H., J. Yu, X. Men, J. Zhang, Z. Ding, Y. Jiang, C. Wu, and D. T. Chiu. 2021. Reversible ratiometric NADH sensing using semiconducting polymer dots. Angewandte Chemie (International ed. in English) 60 (21):12007–12. doi: 10.1002/anie.202100774.
  • Chen, S., K. Shang, X. Gao, and X. Wang. 2022. The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosensors & Bioelectronics 211:114376. doi: 10.1016/j.bios.2022.114376.
  • Chen, Y., L. Yin, Y. W. Li, Y. Ma, J. Yang, Q. Meng, and J. Shi. 2016. Determination of reduced nicotinamide adenine dinucleotide with a protamine multiwalled carbon nanotube electrode. Analytical Letters 49 (2):258–68. doi: 10.1080/00032719.2015.1065881.
  • Deore, B. A., and M. S. Freund. 2005. Reactivity of poly(anilineboronic acid) with NAD+ and NADH. Chemistry of Materials 17 (11):2918–23. doi: 10.1021/cm050647o.
  • Ding, M., T. Hou, H. Niu, N. Zhang, P. Guan, and X. Hu. 2022. Electrocatalytic oxidation of NADH at graphene-modified electrodes based on electropolymerized poly(thionine-methylene blue) films from nature deep eutectic solvents. Journal of Electroanalytical Chemistry 920:116602. doi: 10.1016/j.jelechem.2022.116602.
  • Ding, M., H. Niu, N. Zhang, T. Hou, P. Guan, and X. Hu. 2022. Facile fabrication of electrochemically reduced graphene oxide/polythionine-methylene blue and its use as a platform for detection of nicotinamide adenine dinucleotide in the artificial urine sample. Electrochimica Acta 425:140715. doi: 10.1016/j.electacta.2022.140715.
  • Elancheziyan, M., K. Theyagarajan, V. K. Ponnusamy, K. Thenmozhi, and S. Senthilkumar. 2022. Porous graphene oxide based disposable non-enzymatic electrochemical sensor for the determination of nicotinamide adenine dinucleotide. Micro and Nano Engineering 15:100133. doi: 10.1016/j.mne.2022.100133.
  • Erçarıkcı, E., K. Dağcı, E. Topçu, and M. Alanyalıoğlu. 2014. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films. Materials Research Bulletin 55:95–101. doi: 10.1016/j.materresbull.2014.04.006.
  • Hrubša, M., T. Siatka, I. Nejmanová, M. Vopršalová, L. Kujovská Krčmová, K. Matoušová, L. Javorská, K. Macáková, L. Mercolini, F. Remião, and M. Máťuš,. 2022. Biological properties of vitamins of the B-complex, part 1: Vitamins B1, B2, B3, and B5. Nutrients 14: 484. doi: 10.3390/nu14030484.
  • Immanuel, S., and R. Sivasubramanian. 2022. Electrochemical kinetic investigation of NADH oxidation on Prussian blue-mediated chemically reduced graphene oxide nanosheets. Journal of Physics and Chemistry of Solids 161:110471. doi: 10.1016/j.jpcs.2021.110471.
  • Istrate, O. M., L. Rotariu, and C. Bala. 2016a. Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchimica Acta 183 (1):57–65. doi: 10.1007/s00604-015-1595-4.
  • Istrate, O. M., L. Rotariu, V. E. Marinescu, and C. Bala. 2016b. NADH sensing platform based on electrochemically generated reduced graphene oxide-gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sensors and Actuators B, Chemical 223:697–704. doi: 10.1016/j.snb.2015.09.142.
  • Jayabal, S., and R. Ramaraj. 2015. Amperometric sensing of NADH at gold nanorods stabilized in amine-functionalized silicate sol–gel matrix modified electrode. Journal of Applied Electrochemistry 45 (8):881–8. doi: 10.1007/s10800-015-0857-5.
  • Kıymaz Onat, E., M. Bilgi Kamaç, and M. Yılmaz. 2023. A disposable non-enzymatic dual sensor for simultaneous amperometric determination of NADH and H2O2. Journal of Applied Electrochemistry 53 (11):2213–27. doi: 10.1007/s10800-023-01906-y.
  • Kumar, S. A., and S. M. Chen. 2008. Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-a review. Sensors (Basel, Switzerland) 8 (2):739–66. doi: 10.3390/s8020739.
  • Liu, J., L. Sun, G. Li, J. Hu, and Q. He. 2021. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Materials Research Bulletin 133:111050. doi: 10.1016/j.materresbull.2020.111050.
  • Manusha, P., S. Yadav, J. Satija, and S. Senthilkumar. 2021. Designing electrochemical NADH sensor using silver nanoparticles/phenothiazine nanohybrid and investigation on the shape dependent sensing behavior. Sensors and Actuators B: Chemical 347:130649. doi: 10.1016/j.snb.2021.130649.
  • Martínez-Periñán, E., A. Domínguez-Saldaña, A. M. Villa-Manso, C. Gutiérrez-Sánchez, M. Revenga-Parra, E. Mateo-Martí, F. Pariente, and E. Lorenzo. 2023. Azure A embedded in carbon dots as NADH electrocatalyst: Development of a glutamate electrochemical biosensor. Sensors and Actuators B: Chemical 374:132761. doi: 10.1016/j.snb.2022.132761.
  • Mie, Y., Y. Yasutake, M. Ikegami, and T. Tamura. 2019. Anodized gold surface enables mediator-free and low-overpotential electrochemical oxidation of NADH: A facile method for the development of an NAD+-dependent enzyme biosensor. Sensors and Actuators B: Chemical 288:512–8. doi: 10.1016/j.snb.2019.03.039.
  • Pasakon, P., J. P. Mensing, D. Phokaratkul, C. Karuwan, T. Lomas, A. Wisitsoraat, and A. Tuantranont. 2019. A high-performance, disposable screen-printed carbon electrode modified with multi-walled carbon nanotubes/graphene for ultratrace level electrochemical sensors. Journal of Applied Electrochemistry 49 (2):217–27. doi: 10.1007/s10800-018-1268-1.
  • Peña, R. C., M. Bertotti, and C. M. A. Brett. 2011. Methylene blue/multiwall carbon nanotube modified electrode for the amperometric determination of hydrogen peroxide. Electroanalysis 23 (10):2290–6. doi: 10.1002/elan.201100324.
  • Prasanna, S. B., A. A. Bahajjaj, Y. H. Lee, Y. C. Lin, U. Dhawan, R. Sakthivel, and R. J. Chung. 2023. Highly responsive and sensitive non-enzymatic electrochemical sensor for the detection of β-NADH in food, environmental and biological samples using AuNP on polydopamine/titanium carbide composite. Food Chemistry 426:136609. doi: 10.1016/j.foodchem.2023.136609.
  • Radoi, A., and D. Compagnone. 2009. Recent advances in NADH electrochemical sensing design. Bioelectrochemistry (Amsterdam, Netherlands) 76 (1-2):126–34. doi: 10.1016/j.bioelechem.2009.06.008.
  • Rotariu, L., O. M. Istrate, and C. Bala. 2014. Poly(allylamine hydrochloride) modified screen-printed carbon electrode for sensitive and selective detection of NADH. Sensors and Actuators B: Chemical 191:491–7. doi: 10.1016/j.snb.2013.09.077.
  • Sahin, M., and E. Ayranci. 2015. Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochimica Acta 166:261–70. doi: 10.1016/j.electacta.2015.03.030.
  • Santhosh, M., and T. Park. 2024. Paper microfluidics based on rGO/polyaniline nanofibers for sensing pyridoxine. Journal of Biosystem Engineering 49:77–88. doi: 10.1007/s42853-024-00216-1.
  • Schaefer, P. M., S. Kalinina, A. Rueck, C. A. F. von Arnim, and B. von Einem. 2019. NADH Autofluorescence-A marker on its way to boost bioenergetic Research. Cytometry. Part A: The Journal of the International Society for Analytical Cytology 95 (1):34–46. doi: 10.1002/cyto.a.23597.
  • Somogyi, A., G. Horvai, M. Csala, and B. Tóth. 2016. Analytical approaches for the quantitation of redox-active pyridine dinucleotides in biological matrices. Periodica Polytechnica Chemical Engineering 60 (4):218–30. doi: 10.3311/PPch.9470.
  • Topçu, E., K. Dağcı, and M. Alanyalıoğlu. 2016. Free-standing graphene/poly(methylene blue)/AgNPs composite paper for electrochemical sensing of NADH. Electroanalysis 28 (9):2058–69. doi: 10.1002/elan.201600108.
  • Veskoukis, A. S., N. V. Margaritelis, A. Kyparos, V. Paschalis, and M. G. Nikolaidis. 2018. Spectrophotometric assays for measuring redox biomarkers in blood and tissues: The NADPH network. Redox Report: Communications in Free Radical Research 23 (1):47–56. doi: 10.1080/13510002.2017.1392695.
  • Vukojević, V., S. Djurdjić, M. Ognjanović, B. Antić, K. Kalcher, J. Mutić, and D. M. Stanković. 2018. RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. Biosensors & Bioelectronics 117:392–7. doi: 10.1016/j.bios.2018.06.038.
  • Wang, J., L. Angnes, and T. Martinez. 1992. Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochemistry and Bioenergetics 29 (2):215–21. doi: 10.1016/0302-4598(92)80069-S.
  • Yoshino, J., and S. I. Imai. 2013. Accurate measurement of nicotinamide adenine dinucleotide (NAD+) with high-performance liquid chromatography. Methods in Molecular Biology (Clifton, N.J.) 1077:203–15. doi: 10.1007/978-1-62703-637-5_14.
  • Zakaria, N. D., M. H. Omar, N. N. Ahmad Kamal, K. A. Razak, T. Sönmez, V. Balakrishnan, and H. H. Hamzah. 2021. Effect of supporting background electrolytes on the nanostructure morphologies and electrochemical behaviors of electrodeposited gold nanoparticles on glassy carbon electrode surfaces. ACS Omega 6 (38):24419–31. doi: 10.1021/acsomega.1c02670.
  • Zhang, S., P. Ling, Y. Chen, J. Liu, and C. Yang. 2023. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection. Diamond and Related Materials 135:109811. doi: 10.1016/j.diamond.2023.109811.
  • Zhu, S., X. Zhao, G. Chen, H. Wang, G. Xu, and J. You. 2015. Electrochemical behavior and voltammetric determination of dihydronicotinamide adenine dinucleotide using a glassy carbon electrode modified with single-walled carbon nanohorns. Ionics 21 (10):2911–7. doi: 10.1007/s11581-015-1472-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.