23
Views
0
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Elemental Analysis with Sorption Preconcentration by Graphene Oxide for Mineral Water by Inductively Coupled Plasma – Optical Emission and Mass Spectrometries (ICP-OES and ICP-MS)

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Received 12 Mar 2024, Accepted 14 May 2024, Published online: 30 May 2024

References

  • Ahmadi, F., K. Niknam, A. Khanmohammadi, and Z. Adibmehr. 2010. Pre-concentration and determination of heavy metals on modified activated carbon in real samples. Indonesian Journal of Chemistry 8 (2):130–5. doi:10.22146/ijc.21613.
  • Ajala, O. J., J. O. Tijani, M. T. Bankole, and A. S. Abdulkareem. 2022. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environmental Nanotechnology, Monitoring & Management 18:100673. doi:10.1016/j.enmm.2022.100673.
  • Ambrosi, A., C. K. Chua, B. Khezri, Z. Sofer, R. D. Webster, and M. Pumera. 2012. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proceedings of the National Academy of Sciences of the United States of America 109 (32):12899–904. doi:10.1073/pnas.1205388109.
  • Bian, Y., Z.-Y. Bian, J.-X. Zhang, A.-Z. Ding, S.-L. Liu, and H. Wang. 2015. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Applied Surface Science 329:269–75. doi:10.1016/j.apsusc.2014.12.090.
  • Cao, J., G.-Q. Qi, K. Ke, Y. Luo, W. Yang, B.-H. Xie, and M.-B. Yang. 2012. Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. Journal of Materials Science 47 (13):5097–105. doi:10.1007/s10853-012-6383-5.
  • Cheng, H., W. Zhang, Y. Wang, and J. Liu. 2018. Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic and selenium using HPLC with ICP-MS detection. Microchimica Acta 185 (9):1–8. doi:10.1007/s00604-018-2960-x.
  • Chen, C.-C., S.-J. Jiang, and A. C. Sahayam. 2015. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature. Talanta 131:585–9. doi:10.1016/j.talanta.2014.08.034.
  • Chen, S., J. Li, Y. He, and D. Lu. 2016. Use of carbon nanofibers loaded with 1-phenyl-3-methyl-4-benzoyl-5-pyrazone for preconcentration and separation of trace rare earth elements prior to their determination by ICP-MS. Atomic Spectroscopy 37 (3):96–101. doi:10.46770/AS.2016.03.002.
  • DesMarais, T. L., and M. Costa. 2019. Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology 14:1–7. doi:10.1016/j.cotox.2019.05.003.
  • Ebrahimi, B., S. Bahar, and S. Moedi. 2015. Evaluation of graphene as a solid-phase extraction sorbent for the preconcentration and determination of trace amounts of nickel in food samples prior to flame atomic absorption spectrometry. Journal of AOAC International 98 (3):822–7. doi:10.5740/jaoacint.14-190.
  • F, H. L., C. P. Tan, Z. R. M, and N. H. Z. A. 2021. Effect of sonication time and heat treatment on the structural and physical properties of chitosan/graphene oxide nanocomposite films. Food Packaging and Shelf Life 28:100663. doi:10.1016/j.fpsl.2021.100663.
  • García-Mesa, J. C., P. Leal, M. López Guerrero, and E. Vereda Alonso. 2019. Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP OES based on a new functionalized magnetic graphene oxide. Microchemical Journal 150:104141. doi:10.1016/j.microc.2019.104141.
  • Gui, W., C. Tian, Q. Sun, S. Li, W. Zhang, J. Tang, and G. Zhu. 2016. Simultaneous determination of organotin pesticides by HPLC-ICP-MS and their sorption, desorption, and transformation in freshwater sediments. Water Research 95:185–94. doi:10.1016/j.watres.2016.02.056.
  • He, M., L. Huang, B. Zhao, B. Chen, and B. Hu. 2017. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Analytica Chimica Acta 973:1–24. doi:10.1016/j.aca.2017.03.047.
  • Hummers, W. S., and R. E. Offeman. 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society 80 (6):1339– doi:10.1021/ja01539a017.
  • Järup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin 68 (1):167–82. doi:10.1093/bmb/ldg032.
  • Khilji, M. U. N., A. A. Otho, R. Memon, A. Khalid, M. Kazi, A. Hyder, D. Janwery, N. A. Nahyoon, A. A. Memon, N. Memon, et al. 2023. Facile fabrication of a free-standing magnesium oxide-graphene oxide functionalized membrane: A robust and efficient material for the removal of pollutants from aqueous matrices. Analytical Letters :1–18. doi:10.1080/00032719.2023.2284841.
  • Li, F., J. Zhu, P. Sun, M. Zhang, Z. Li, D. Xu, X. Gong, X. Zou, A. K. Geim, Y. Su, et al. 2022. Highly efficient and selective extraction of gold by reduced graphene oxide. Nature Communications 13 (1):4472. doi:10.1038/s41467-022-32204-4.
  • Lingamdinne, L., J. Koduru, H. Roh, Y.-L. Choi, Y.-Y. Chang, and J.-K. Yang. 2016. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165:90–6. doi:10.1016/j.hydromet.2015.10.021.
  • Manousi, N., B. Gomez-Gomez, Y. Madrid, E. Deliyanni, and G. Zachariadis. 2020. Determination of rare earth elements by inductively coupled plasma-mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design. Microchemical Journal 152:104428. doi:10.1016/j.microc.2019.104428.
  • Mellado, C., T. Figueroa, R. Baez, M. Meléndrez, and K. Fernández. 2019. Effects of probe and bath ultrasonic treatments on graphene oxide structure. Materials Today Chemistry 13:1–7. doi:10.1016/j.mtchem.2019.04.006.
  • Mikuła, B., and B. Puzio. 2007. Determination of trace metals by ICP-OES in plant materials after preconcentration of 1,10-phenanthroline complexes on activated carbon. Talanta 71 (1):136–40. doi:10.1016/j.talanta.2006.03.041.
  • Mohan, V., K-t Lau, D. Hui, and D. Bhattacharyya. 2018. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B Engineering.142:200–20. doi:10.1016/j.compositesb.2018.01.013.
  • Mombeshora, E. T., and E. Muchuweni. 2023. Dynamics of reduced graphene oxide: Synthesis and structural models. RSC Advances 13 (26):17633–55. doi:10.1039/D3RA02098C.
  • Montoro-Leal, P., J. C. García-Mesa, I. Morales-Benítez, L. Vázquez-Palomo, M. D. M. López Guerrero, and E. I. Vereda Alonso. 2023. Synthesis of a novel magnetic nanomaterial for the development of a multielemental speciation method of lead, mercury, and vanadium via HPLC-ICP MS. Mikrochimica Acta 190 (8):296. doi:10.1007/s00604-023-05877-x.
  • Nomngongo, P., J. Ngila, T. Msagati, and B. Moodley. 2013. Preconcentration of trace multi-elements in water samples using Dowex 50W-x8 and Chelex-100 resins prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-OES). Physics and Chemistry of the Earth 66:83–8. doi:10.1016/j.pce.2013.08.007.
  • Potts, J. R., D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff. 2011. Graphene-based polymer nanocomposites. Polymer 52 (1):5–25. doi:10.1016/j.polymer.2010.11.042.
  • Rashid, H., and A. Moghimi. 2014. Graphene for preconcentration of trace amounts of Ni in water and paraffin-embedded tissues from liver loggerhead turtles specimens prior to flame atomic absorption spectrometry. Oriental Journal of Chemistry 30 (1):309–17. doi:10.13005/ojc/300140.
  • Su, S., B. Chen, M. He, B. Hu, and Z. Xiao. 2014. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline–graphene oxide composite. Talanta 119:458–66. doi:10.1016/j.talanta.2013.11.027.
  • Tchounwou, P., C. Yedjou, A. Patlolla, and D. Sutton. 2012. Heavy metal toxicity and the environment. Experientia Supplementum (2012)101:133–64. doi:10.1007/978-3-7643-8340-4_6.
  • Udoka, N., and E. Kenechukwu. 2019. Proficiency of graphene oxide in adsorption of Zn(II) ions from aqueous solution. Phys. Chem. Res 7:295–307. doi:10.22036/PCR.2018.148061.1538.
  • Whitener, K., Jr., and P. Sheehan. 2014. Graphene synthesis. Diamond and Related Materials 46:25–34. doi:10.1016/j.diamond.2014.04.006.
  • Yan, J., C. Shizhong, L. Jianfen, H. Yuayuan, and L. Dengbo. 2017. Study on the determination of trace lead and cadmium by ICP-MS after preconcentration and separation on carbon nanofibers loaded with 8-hydroxyquinoline. Atomic Spectroscopy 38 (2):42–7. doi:10.46770/AS.2017.02.002.
  • Yan, Y., S. Zeng, F. Xu, Y. Hu, and H. Huang. 2024. Electrochemical Determination of Acetaminophen with a FeNi Nanoparticle Reduced Graphene Oxide (rGO) Nanocomposite and Differential Pulse Voltammetry (DPV). Analytical Letters 57 (6):996–1007. doi:10.1080/00032719.2023.2236257.
  • Zhang, A., H. Wang, P. Zha, M. Wang, H. Wang, B. Fan, D. Ren, Y. Han, and S. Gao. 2018. Microwave-induced combustion of graphene for further determination of elemental impurities using inductively coupled plasma optical emission spectrometry and total reflection X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry 33 (11):1910–6. doi:10.1039/C8JA00229K.
  • Zhang, J., W. Xiaoju, D. Yanhui, X. Zhifang, and L. Guomin. 2016. Solid phase extraction of rare earth elements in deep groundwater with multi-wall carbon nanotubes as adsorbent for the determination by inductively coupled plasma mass spectrometry. Atomic Spectroscopy 37 (1):1–6. doi:10.46770/AS.2016.01.001.
  • Zhu, Y., S. Murali, M. Stoller, A. Velamakanni, R. Piner, and R. Ruoff. 2010. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48 (7):2118–22. doi:10.1016/j.carbon.2010.02.001.
  • Zolfonoun, E., and S. Yousefi. 2020. Exfoliated graphitic carbon nitride nanosheets for on-line vortex-assisted dispersive micro-solid phase extraction of indium prior to determination by ICP-OES. International Journal of Environmental Analytical Chemistry 102 (16):4031–41. doi:10.1080/03067319.2020.1779242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.