18
Views
0
CrossRef citations to date
0
Altmetric
Electrochemistry

Solid-Phase Microwave Synthesis of Nickel Sulfide/Nickel Oxide/Carbon Nanotubes for the Electrochemical Determination of Melamine by Differential Pulse Voltammetry (DPV)

, &
Received 27 Jan 2024, Accepted 31 May 2024, Published online: 11 Jun 2024

References

  • Abedini, R., G. J. Khaniki, E. M. Aghaee, P. Sadighara, S. Nazmara, B. Akbari-Adergani, and M. Naderi. 2021. Determination of melamine contamination in chocolates containing powdered milk by high-performance liquid chromatography (HPLC). Journal of Environmental Health Science & Engineering 19 (1):165–71. doi: 10.1007/s40201-020-00590-w.
  • An, Q. Q., X. Z. Feng, Z. F. Zhou, T. Zhan, S. F. Lian, J. M. Zhu, G. C. Han, Z. C. Chen, and H. B. Kraatz. 2022. One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chemistry 383:132403. doi: 10.1016/j.foodchem.2022.132403.
  • Chen, T. W., J. X. Qiu, S. Meng, Y. Q. Zheng, and Y. Q. He. 2020. Sensitive detection of melamine in milk based on MWCN/GC electrode. Chemical Research and Application 32 (10):1759–63.
  • Chen, Q. Y., S. H. Liang, H. Zhang, D. X. Liu, and L. C. Zhuo. 2021. Fabrication and characterization of W-Ni nanocomposites via a facile chemical co-precipitation route. Advanced Powder Technology 32 (3):908–15. doi: 10.1016/j.apt.2021.01.035.
  • de Araujo, W. R., and T. R. L. C. Paixão. 2014. Use of copper electrode for melamine quantification in milk. Electrochimica Acta 117:379–84. doi: 10.1016/j.electacta.2013.11.160.
  • Deng, J., S. Q. Ju, Y. T. Liu, N. Xiao, J. Xie, and H. Q. Zhao. 2015. Highly sensitive and selective determination of melamine in milk using glassy carbon electrode modified with molecularly imprinted copolymer. Food Analytical Methods 8 (10):2437–46. doi: 10.1007/s12161-015-0134-6.
  • dos Santos, A. M., J. C. Sagás, A. L. J. Pereira, F. D. Origo, R. C. Catapan, and D. A. Duarte. 2022. Ni/Al2O3 spherical catalysts produced by magnetron sputtering. Vacuum 200:111042. doi: 10.1016/j.vacuum.2022.111042.
  • Feng, N. N., J. Zhang, and W. Li. 2019. Chitosan/graphene oxide nanocomposite-based electrochemical sensor for ppb level detection of melamine. Journal of the Electrochemical Society 166 (14):B1364–B1369. doi: 10.1149/2.1321914jes.
  • Ghanati, K., H. Eghbaljoo, N. Akbari, Y. Mazaheri, S. Aghebat-Bekheir, B. Mahmoodi, F. Zandsalimi, B. Basaran, and P. Sadighara. 2023. Determination of melamine contamination in milk with various packaging: A risk assessment study. Environmental Monitoring and Assessment 195 (9):1095. doi: 10.1007/s10661-023-11737-1.
  • Guo, Z., X. F. Xu, J. Li, Y. W. Liu, J. Zhang, and C. Yang. 2014. Ordered mesoporous carbon as electrode modification material for selective and sensitive electrochemical sensing of melamine. Sensors and Actuators B: Chemical 200:101–8. doi: 10.1016/j.snb.2014.04.031.
  • Hu, H. Y., T. Wei, and H. Zhai. 2023. Preparation of zinc oxide/graphene nanocomposites by microwave approach for electrochemical detection of melamine in milk. Journal of Food Safety and Quality 14 (1):244–52.
  • Ji, Z., W. Chen, E. Wang, and J. Yang. 2017. Detection of melamine in milk by polarography. Physical Testing and Chemical Analysis Part B: Chemical Analysis 53 (9):1014–9.
  • Kuang, P. Y., T. Tong, K. Fan, and J. G. Yu. 2017. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catalysis 7 (9):6179–87. doi: 10.1021/acscatal.7b02225.
  • Li, T. F., T. Y. Lu, Y. Li, J. W. Yin, Y. W. Tang, M. Y. Zhang, H. Pang, L. Xu, J. Yang, and Y. W. Zhang. 2021a. Interfacial engineering-induced electronic regulation drastically enhances the electrocatalytic oxygen evolution: Immobilization of Janus-structured NiS/NiO nanoparticles onto carbon nanotubes/nanofiber-integrated superstructures. Chemical Engineering Journal 428:131094. doi: 10.1016/j.cej.2021.131094.
  • Li, Z. H., Y. Sun, R. Hu, S. Ye, J. Song, L. W. Liu, and J. L. Qu. 2021b. Facile one-pot solvothermal preparation of two-dimensional Ni-based metal-organic framework microsheets as a high-performance supercapacitor material. RSC Advances 11 (14):8362–6. doi: 10.1039/d1ra00259g.
  • Liu, B. Z., B. Xiao, L. Q. Cui, and M. Wang. 2015. Molecularly imprinted electrochemical sensor for the highly selective and sensitive determination of melamine. Materials Science and Engineering C 55:457–61.
  • Liu, D., D. S. Li, and D. R. Yang. 2017. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals. AIP Advances 7 (1):15028. doi: 10.1063/1.4974307.
  • Lu, N., W. C. Wang, X. H. Chen, and Z. D. Chen. 2017. Electrochemiluminescence detection of melamine with electropolymerized poly(sulfosalicylic acid)/ru(bpy)32+ modified electrode. International Journal of Electrochemical Science 12 (5):4035–43. doi: 10.20964/2017.05.31.
  • Mohebbi, M., K. Ghanbari, and F. Nejabati. 2023. Electrochemical sensor based on EDTA-functionalized polyorthophenylene diamine g-C3N4 nanocomposite for determination of melamine in milk. Journal of Electroanalytical Chemistry 946:117757. doi: 10.1016/j.jelechem.2023.117757.
  • Rajesh, M., K. Vengatesan, M. H. Aly, R. Sitharthan, S. S. Dhanabalan, and M. Karthikeyan. 2023. Electrical and optical properties of sol-gel-deposited NiO films and corresponding response to annealing temperature. Optical and Quantum Electronics 55 (13):1167. doi: 10.1007/s11082-023-05254-1.
  • Ren, Q. X., X. Y. Shen, Y. Y. Sun, R. H. Fan, and J. Zhang. 2020. A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine. Food Chemistry 304:125397. doi: 10.1016/j.foodchem.2019.125397.
  • Shamsipur, M., N. Moradi, and A. Pashabadi. 2018. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: A highly sensitive impedimetric melamine sensor. Journal of Solid State Electrochemistry 22 (1):169–80. doi: 10.1007/s10008-017-3731-z.
  • Sheikh, F., A. Arshad, F. Marriam, Z. Ahmad, A. Haider, M. Iqbal, and M. A. Mansoor. 2023. Fabrication of a nickel sulfide/nickel oxide heterostructure for efficient electrochemical oxidation of methanol. New Journal of Chemistry 47 (38):17970–83. doi: 10.1039/D3NJ02855K.
  • Silambarasan, K., J. Archana, S. Athithya, S. Harish, R. S. Ganesh, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, K. Hara, and Y. Hayakawa. 2020. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science 501:144010. doi: 10.1016/j.apsusc.2019.144010.
  • Wang, Y. P., A. Q. Pan, Y. F. Zhang, J. R. Shi, J. D. Lin, S. Q. Liang, and G. Z. Cao. 2018a. Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A 6 (19):9153–60. doi: 10.1039/C8TA01866A.
  • Wang, X. H., B. S. Guo, S. Ni, J. H. Yi, and M. Song. 2018b. Effects of acid mixture treatment during oxidation process on the electroless copper plating for multi-walled carbon tubes. Materials Science and Engineering of Powder Metallurgy 23 (3):266–73.
  • Wang, H. Y., J. L. Wang, M. M. Liang, Z. M. He, K. X. Li, W. Q. Song, S. P. Tian, W. Y. Duan, Y. Z. Zhao, and Z. C. Miao. 2021. Novel dealloying-fabricated NiS/NiO nanoparticles with superior cycling stability for supercapacitors. ACS Omega 6 (28):17999–8007. doi: 10.1021/acsomega.1c01717.
  • Wu, X. Y., S. M. Li, Y. Y. Xu, B. Wang, J. H. Liu, and M. Yu. 2019. Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like β-NiS@Ni3S2 frameworks as free-standing integrated anode for high performance lithium-ion batteries. Chemical Engineering Journal 356:245–54. doi: 10.1016/j.cej.2018.08.187.
  • Yang, M. J., H. Y. Zhu, Y. Q. Zheng, C. T. F. Zhang, G. Q. Luo, Q. F. Xu, Q. Z. Li, S. Zhang, T. Goto, and R. Tu. 2022. One-step chemical vapor deposition fabrication of Ni@NiO@graphite nanoparticles for the oxygen evolution reaction of water splitting. RSC Advances 12 (17):10496–503. doi: 10.1039/d2ra00947a.
  • Yin, W. Z., C. Q. Ma, T. Zhu, J. Gu, C. Zhu, L. Li, and G. Q. Chen. 2021. Detection of melamine based on the fluorescence changes of nitrogen-doped carbon dots. Journal of Spectroscopy 2021:1–9. doi: 10.1155/2021/5558280.
  • Yu, C. H., L. Li, Y. P. Ding, H. J. Liu, H. Y. Cui, F. F. Zhang, J. X. Lin, and Y. C. Duan. 2021. A sensitive molecularly imprinted electrochemical aptasensor for highly specific determination of melamine. Food Chemistry 363:130202. doi: 10.1016/j.foodchem.2021.130202.
  • Zhang, D. L., H. Y. Mou, L. Chen, D. B. Wang, and C. X. Song. 2020. Design and in-situ synthesis of unique catalyst via embedding graphene oxide shell membrane in NiS2 for efficient hydrogen evolution. Applied Surface Science 510:145483. doi: 10.1016/j.apsusc.2020.145483.
  • Zhang, Z. H., R. Cai, F. Long, and J. Wang. 2015. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 134:435–42. doi: 10.1016/j.talanta.2014.11.040.
  • Zhang, W. Q., G. R. Xu, R. Q. Liu, J. Chen, X. B. Li, Y. D. Zhang, and Y. P. Zhang. 2016. Novel MOFs@XC-72-Nafion nanohybrid modified glassy carbon electrode for the sensitive determination of melamine. Electrochimica Acta 211:689–96. doi: 10.1016/j.electacta.2016.06.100.
  • Zheng, Y. Y., Y. R. Tian, S. X. Liu, X. Q. Tan, S. M. Wang, Q. P. Guo, J. J. Luo, and Z. Y. Li. 2019. One-step microwave synthesis of NiO/NiS@CNT nanocomposites for high-cycling-stability supercapacitors. Journal of Alloys and Compounds 806:170–9. doi: 10.1016/j.jallcom.2019.07.213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.