21
Views
0
CrossRef citations to date
0
Altmetric
Metal Speciation

Determination of Inorganic Arsenic Species in Drinking Water by Cloud Point Extraction Coupled with Ultraviolet-Visible Spectrophotometry

, &
Received 24 Oct 2023, Accepted 01 Jun 2024, Published online: 21 Jun 2024

References

  • Altunay, N., A. Elik, C. Bulutlu, and R. Gürkan. 2018. Application of simple, fast and eco-friendly ultrasound-assisted-cloud point extraction for pre-concentration of zinc, nickel and cobalt from foods and vegetables prior to their flame atomic absorption spectrometric determinations. International Journal of Environmental Analytical Chemistry 98 (7):655–75. doi: 10.1080/03067319.2018.1487063.
  • Anderson, S. L., and S. A. Pergantis. 2003. Sequential hydride generation/pneumatic nebulisation inductively coupled plasma mass spectrometry for the fractionation of arsenic and selenium species. Talanta 60 (4):821–30. doi: 10.1016/S0039-9140(03)00148-6.
  • Ashouri, V., K. Adib, G. A. Fariman, M. R. Ganjali, and M. Rahimi-Nasrabadi. 2021. Determination of arsenic species using functionalized ionic liquid by in situ dispersive liquid-liquid microextraction followed by atomic absorption spectrometry. Food Chemistry 349:129115. doi: 10.1016/j.foodchem.2021.129115.
  • Authority, E. F. S., D. Arcella, C. Cascio, and J. Á. Gómez Ruiz. 2021. Chronic dietary exposure to inorganic arsenic. EFSA Journal European Food Safety Authority 19 (1):e06380. doi: 10.2903/j.efsa.2021.6380.
  • Baig, J. A., T. G., Kazi, A. Q., Shah, M. B., Arain, H. I., Afridi, S., Khan, G. A., Kandhro, A. S., Soomro. 2010. Evaluating the accumulation of arsenic in maize (Zea mays L.) plants from its growing media by cloud point extraction. Food and Chemical Toxicology 48 (11):3051–7. doi: 10.1016/j.fct.2010.07.043.
  • Chattopadhyay, A., A. P. Singh, S. K. Singh, A. Barman, A. Patra, B. P. Mondal, and K. Banerjee. 2020. Spatial variability of arsenic in Indo-Gangetic basin of Varanasi and its cancer risk assessment. Chemosphere 238:124623. doi: 10.1016/j.chemosphere.2019.124623.
  • Cheng, K., K. Choi, J. Kim, I. H. Sung, and D. S. Chung. 2013. Sensitive arsenic analysis by carrier-mediated counter-transport single drop microextraction coupled with capillary electrophoresis. Microchemical Journal 106:220–5. doi: 10.1016/j.microc.2012.07.005.
  • dos Santos, G. M., D. Pozebon, C. Cerveira, and D. P. de Moraes. 2017. Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS). Microchemical Journal 133:265–71. doi: 10.1016/j.microc.2017.03.025.
  • Esperanza, M. G., E. Y. Barrientos, K. Wrobel, F. J. A. Aguilar, A. R. C. Escobosa, and K. Wrobel. 2017. Determination of total arsenic and speciation analysis in Mexican maize tortillas by hydride generation–microwave plasma atomic emission spectrometry and high performance liquid chromatography–inductively coupled plasma–mass spectrometry. Analytical Methods 9 (13):2059–68. doi: 10.1039/C7AY00224F.
  • González, J. C., I. Lavilla, and C. Bendicho. 2003. Evaluation of non-chromatographic approaches for speciation of extractable As (III) and As (V) in environmental solid samples by FI-HGAAS. Talanta 59 (3):525–34. doi: 10.1016/S0039-9140(02)00541-6.
  • Guo, M., J. Li, S. Fan, W. Liu, B. Wang, C. Gao, J. Zhou, and X. Hai. 2019. Speciation analysis of arsenic in urine samples from APL patients treated with single agent As2O3 by HPLC-HG-AFS. Journal of Pharmaceutical and Biomedical Analysis 171:212–7. doi: 10.1016/j.jpba.2019.04.014.
  • Gürkan, R., and N. Kartal Temel. 2020. Manganese sensitised-indirect determination of melamine in milk-based samples by flame atomic absorption spectrometry coupled with ultrasound assisted-cloud point extraction. International Journal of Environmental Analytical Chemistry 100 (2):152–74. doi: 10.1080/03067319.2019.1632302.
  • Gürkan, R., U. Kir, and N. Altunay. 2015. A novel preconcentration procedure using neutral red as ion-pairing reagent for determination of inorganic dissolved arsenic species in different water and beverages by spectrophotometry. Food Analytical Methods 8 (7):1637–51. doi: 10.1007/s12161-014-0039-9.
  • Gürkan, R., U. Kir, and N. Altunay. 2015. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry. Food Chemistry 180:32–41. doi: 10.1016/j.foodchem.2015.01.142.
  • Igov, A., R. Simonovic, and R. Igov. 2003. Kinetic determination of ultramicro amounts of As (III) in solution. Journal of the Serbian Chemical Society 68 (2):131–6. doi: 10.2298/JSC0302131I.
  • Jeong, S., H. Lee, Y.-T. Kim, and H.-O. Yoon. 2017. Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICP-MS: Arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and dimethylmonothioarsinic acid. Microchemical Journal 134:295–300. doi: 10.1016/j.microc.2017.06.011.
  • Joint FAO/WHO Expert Committee on Food Additives. 2011. Evaluation of certain contaminants in food: Seventy-second [72nd] report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
  • Jung, M. Y., J. H. Kang, H. J. Jung, and S. Y. Ma. 2018. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry. Food Chemistry 240:1179–83. doi: 10.1016/j.foodchem.2017.08.053.
  • Leal, P. M., E. V. Alonso, M. L. Guerrero, M. S. Cordero, J. C. Pavón, and A. G. de Torres. 2018. Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination. Talanta 184:251–9. doi: 10.1016/j.talanta.2018.03.019.
  • Marciniak, W., R. Derkacz, M. Muszyńska, P. Baszuk, J. Gronwald, T. Huzarski, C. Cybulski, A. Jakubowska, M. Falco, T. Dębniak, et al. 2020. Blood arsenic levels and the risk of familial breast cancer in Poland. International Journal of Cancer 146 (10):2721–7. doi: 10.1002/ijc.32595.
  • Molin, M., S. M. Ulven, H. M. Meltzer, and J. Alexander. 2015. Arsenic in the human food chain, biotransformation and toxicology–Review focusing on seafood arsenic. Journal of Trace Elements in Medicine and Biology 31:249–59. doi: 10.1016/j.jtemb.2015.01.010.
  • Monasterio, R. P., and R. G. Wuilloud. 2010. Ionic liquid as ion-pairing reagent for liquid–liquid microextraction and preconcentration of arsenic species in natural waters followed by ETAAS. Journal of Analytical Atomic Spectrometry 25 (9):1485–90. doi: 10.1039/c000040j.
  • Öksüz, N., Ş. Saçmacı, M. Saçmacı, and A. Ülgen. 2019. A new fluorescence reagent: Synthesis, characterization and application for speciation of arsenic (III)/(VI) species in tea samples. Food Chemistry 270:579–84. doi: 10.1016/j.foodchem.2018.07.076.
  • Park, J. H., Y.-S. Han, and J. S. Ahn. 2016. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Research 106:295–303. doi: 10.1016/j.watres.2016.10.006.
  • Rivas, R. E., I. López-García, and M. Hernández-Córdoba. 2009. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 64 (4):329–33. doi: 10.1016/j.sab.2009.03.007.
  • Shemirani, F., M. Baghdadi, and M. Ramezani. 2005. Preconcentration and determination of ultra trace amounts of arsenic (III) and arsenic (V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta 65 (4):882–7. doi: 10.1016/j.talanta.2004.08.009.
  • Sugiyama, N. 2021. Attenuation of doubly charged ion interferences on arsenic and selenium by ICP-MS under low kinetic energy collision cell conditions with hydrogen cell gas. Journal of Analytical Atomic Spectrometry 36 (2):294–302. doi: 10.1039/D0JA00301H.
  • Tang, A. N., G. S. Ding, and X. P. Yan. 2005. Cloud point extraction for the determination of As (III) in water samples by electrothermal atomic absorption spectrometry. Talanta 67 (5):942–6. doi: 10.1016/j.talanta.2005.04.016.
  • Tuzen, M., K. O. Saygi, I. Karaman, and M. Soylak. 2010. Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food and Chemical Toxicology 48 (1):41–6. doi: 10.1016/j.fct.2009.09.012.
  • Ulusoy, H. İ., M. Akçay, and R. Gürkan. 2011. Development of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE–FAAS. Talanta 85 (3):1585–91. doi: 10.1016/j.talanta.2011.06.053.
  • Ulusoy, H. I., M. Akçay, S. Ulusoy, and R. Gürkan. 2011. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta 703 (2):137–44. doi: 10.1016/j.aca.2011.07.026.
  • Wang, X., G. Xu, P. Chen, Y. Sun, X. Yao, Y. Lv, W. Guo, and G. Wang. 2018. Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid–liquid microextraction for the determination of arsenic species in rice samples. RSC Advances 8 (30):16858–65. doi: 10.1039/c8ra00875b.
  • Wang, Z., J. Xu, Y. Liu, Z. Li, Y. Xue, Y. Wang, and C. Xue. 2019. Arsenic speciation of edible shrimp by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS): Method development and health assessment. Analytical Letters 52 (14):2266–82. doi: 10.1080/00032719.2019.1608224.
  • Wang, Z.-F, and Z.-J. Cui. 2016. Supercritical fluid extraction and gas chromatography analysis of arsenic species from solid matrices. Chinese Chemical Letters 27 (2):241–6. doi: 10.1016/j.cclet.2015.10.001.
  • World Health Organization. 2003. Arsenic in drinking-water: Background document for development of WHO guidelines for drinking-water quality. World Health Organization. 1–11.
  • Yin, X. B. 2004. On‐line preconcentration for capillary electrophoresis‐atomic fluorescence spectrometric determination of arsenic compounds. Electrophoresis 25 (12):1837–42. doi: 10.1002/elps.200405815.
  • Zhan, S., M. Yu, J. Lv, L. Wang, and P. Zhou. 2014. Colorimetric detection of trace arsenic (III) in aqueous solution using arsenic aptamer and gold nanoparticles. Australian Journal of Chemistry 67 (5):813–8. doi: 10.1071/CH13512.
  • Zounr, R. A., M. Tuzen, and M. Y. Khuhawar. 2017. Ultrasound assisted deep eutectic solvent based on dispersive liquid liquid microextraction of arsenic speciation in water and environmental samples by electrothermal atomic absorption spectrometry. Journal of Molecular Liquids 242:441–6. doi: 10.1016/j.molliq.2017.07.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.