Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 2
191
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Polynomial scaling functions for numerical solution of generalized Kuramoto–Sivashinsky equation

&
Pages 293-306 | Received 05 May 2015, Accepted 11 Dec 2015, Published online: 01 Feb 2016

References

  • Cohen BJ, Krowes JA, Tang WM, et al. Nonlinear saturation of the dissipative trappedion mode-by-mode coupling. Nucl. Fusion. 1976;16:971–992.
  • Kuramoto Y, Tsuzuki T. Persistent propagation of concentration waves in dissipative media for from thermal equilibrium. Prog. Theor. Phys. 1976;55:356–369.
  • Topper J, Kawahara T. Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 1978;44:663–666.
  • Sivashinsky GI. Instabilities, pattern formation and turbulence in flames I. Ann. Rev. Fluid Mech. 1983;15:179–199.
  • Sivashinsky GI. Nonlinear analysis of hydrodynamic instability in laminar flame. I. Derivation of basic equations. Acta Astron. 1977;4:1177–1206.
  • Kuramoto Y. Chemical oscillations, waves, and turbulence. Berlin: Springer-Verlag; 1984.
  • Kuramoto Y, Tsuzuki T. On the formation of dissipative structures in reaction--diffusion systems. Prog. Theor. Phys. 1975;54:687–699.
  • Chang HC, Demekhin EA. Complex wave dynamics on thin films. Amsterdam: Elsevier; 2002.
  • Pego RL, Schneider G, Uecker H. Long-time persistence of Korteweg-de Vries solitons as transient dynamics in a model of inclined film flow. Proc. R. Soc. Edinburgh. 2007;137A:133–146.
  • Tatsumi T. Irregularity, regularity and singularity of turbulence. In: Turbulence and chaotic phenomena in fluids. Proceedings of the International Symposium; Kyoto, Japan: Amsterdam; 1984. p. 1–10.
  • Saprykin S, Demekhin EA, Kalliadasis S. Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses. Phys. Fluids. 2005;17:105–117.
  • Hooper AP, Grimshaw R. Nonlinear instability at the interface between two viscous fluids. Phys. Fluids. 1985;28:37–45.
  • Hyman JM, Nicolaenko B. The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. Physica D. 1986;18:113–126.
  • Michelson D. Steady solutions of the Kuramoto-Sivashinsky equation. Physica D. 1986;19:89–111.
  • Conte R. Exact solutions of nonlinear partial differential equations by singularity analysis. Lecture notes in physics. Berlin: Springer; 2003. p. 1–83.
  • Ma CF. A new lattice Boltzmann model for KdV-Burgers equation. Chin. Phys. Lett. 2005;22:2313–2315.
  • Helal MA, Mehanna MS. A comparison between two different methods for solving KdV-Burgers equation. Chaos Solitions Fractals. 2006;28:320–326.
  • Soliman AA. A numerical simulation and explicit solutions of KdV-Burgers and Lax’s seventh-order KdV equations. Chaos Solitions Fractals. 2006;29:294–302.
  • Dehghan M, Saray BN, Lakestani M. Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions. Math. Methods Appl. Sci. 2014;37:894–912.
  • Dehghan M, Abbaszadeh M, Mohebbi A. The numerical solution of nonlinear high dimensional generalized Benjamin--Bona--Mahony--Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 2014;68:212–237.
  • Dehghan M, Saray BN, Lakestani M. Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers-Huxley equation. Math. Comput. Model. 2012;55:1129–1142.
  • Liu X. Gevrey class regularity and approximate inertial manifolds for the Kuramoto-Sivashinsky equation. Physica D. 1991;50:135–151.
  • Grimshaw R, Hooper AP. The non-existence of a certain class of travelling wave solutions of the Kuramoto-Sivashinsky equation. Physica D. 1991;50:231–238.
  • Khater AH, Temsah RS. Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math. Appl. 2008;56:1465–1472.
  • Lai H, Ma C. Lattice Boltzmann method for the generalized Kuramoto-Sivashinski equation. Physica A. 2009;388:1405–1412.
  • Xu Y, Shu CW. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Meth. Appl. Mech. Eng. 2006;195:3430–3447.
  • Uddin M. Haq Sirajul, Islam Siraj-ul. A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations. Appl. Math. Comput. 2009;212:458–469.
  • Haq S, Bibi N, Tirmizi SIA, et al. Meshless method of lines for the numerical solution of generalized Kuramoto-Sivashinsky equation. Appl. Math. Comput. 2010;217:2404–2413.
  • Lakestani M, Dehghan M. Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions. Appl. Math. Model. 2012;36:605–617.
  • Akrivis G, Smyrlis YS. Implicit--explicit BDF methods for the Kuramoto-Sivashinsky equation. Appl. Numer. Math. 2004;51:151–169.
  • Triki H, Taha TR, Wazwaz AM. Solitary wave solutions for a generalized KdV-mKdV equation with variable coefficients. Math. Comput. Simulat. 2010;80:867–1873.
  • Baldwin D, Goktas O, Hereman W, et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J. Symbolic Comput. 2004;37:669–705.
  • Wazwaz AM. An analytical study of compacton solutions for variants of Kuramoto-Sivashinsky equation. Appl. Math. Comput. 2004;148:571–585.
  • Wazwaz AM. Partial differential equations and solitary waves theory. HEP and Springer: Peking and Berlin; 2009.
  • Abdi-mazraeh S, Lakestani M, Dehghan M. The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets. J. Vibr. Control. 2014;20:913–924.
  • Eslahchi MR, Dehghan M. Application of Taylor series in obtaining the orthogonal operational matrix. Comput. Math. Appl. 2011;61:2596–2604.
  • Kilgore T, Prestin J. Polynomial wavelets on the interval. Constr. Approx. 1996;12:95–110.
  • Rashidinia J, Jokar M. Application of polynomial scaling functions for numerical solution of telegraph equation. Appl. Anal. Int. J. 2016;95:105–123.
  • Rashidinia J, Barati A, Nabati M. Application of Sinc-Galerkin method to singularly perturbed parabolic convection-diffusion problems. Numer. Algor. 2014;66:643–662.
  • Rubin SG, Graves RA. Cubic spline approximation for problems in fluid mechanics. NASA TR R-436; Washington (DC); 1975.
  • Rubin SG, Khosla PK. Higher-order numerical solutions using cubic splines. Am. Inst. Aeronaut. Astronaut. 1976;14:851–858.
  • Rubin SG, Graves RA Jr. Viscous flow solutions with a cubic spline approximation. Comput. Fluids. 1975;3:1–36.
  • Prestin J. Seminar Analysis, Operator Equat. and Numer. Anal. 1988/89. Mean convergence of Lagrange interpolation. Berlin: Karl-WeierstraB-Institut für Mathematik; 1989. p. 75–86.
  • Prestin J, Tasche M. Trigonometric interpolation for bivariate functions of bounded variation. Approximation and function spaces. Banach Center Publ.. 1989;22:309–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.