Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 12
113
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Cauchy problem for a deformed nonlinear Schrődinger equation

Pages 2118-2129 | Received 05 Jan 2016, Accepted 22 Jun 2016, Published online: 18 Jul 2016

References

  • Arnaudon A. On a Lagrangian reduction and a deformation of completely integrable systems. arXiv:1501.02745v1 [nlin.SI] 12 Jan 2015.
  • Arnaudon A. On a deformation of the nonlinear Schrődinger equation. arXiv:1507.02591v3 [nlin.SI] 20 Aug 2015
  • Ablowitz M, Kaup D, Newell A, et al. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974;53:249–315.
  • Bressan A, Constantin A. Global conservative solutions of the Camassa--Holm equation. Arch. Ration. Mech. Anal. 2007;183:215–239.
  • Bressan A, Constantin A. Global dissipative solutions of the Camassa--Holm equation. Anal. Appl. 2007;5:1–27.
  • Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993;71:1661–1664.
  • Constantin A. On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. 2000;10:391–399.
  • Constantin A. The Cauchy problem for the periodic Camassa--Holm equation. J. Differ. Equ. 1997;141:218–235.
  • Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier. 2000;50:321–362.
  • Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998;181:229–243.
  • Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 1998;51:475–504.
  • Constantin A, Escher J. Global existence of solutions and blow-up for a shallow water equation : a geometric approach. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1998;26:303–328.
  • Constantin A, Escher J. Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier. 2000;50:321–362.
  • Constantin A, McKean H. A shallow water equation on the circle. Commun. Pure Appl. Math. 1999;52:949–982.
  • Constantin A, Molinet L. Global weak solutions for a shallow water equation. Commun. Math. Phys. 2000;211:45–61.
  • Bahouri H, Chemin J, Danchin R. Fourier analysis and nonlinear partial differential equations. Berlin Heidelberg: Springer-Verlag; 2011.
  • Dieudonné J. Foundations of modern analysis. New York (NY): Academic Press; 1969. (Pure and Applied Mathematics; vol. 10-I).
  • Dullin HR, Gottwald GA, Holm DD. An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 2001;87:4501–4504.
  • Fokas A, Fuchssteiner B. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D. 1981;4:47–66.
  • Fokas A, Himonas A. Well-posedness of an integrable generalization of the nonlinear schrődinger equation on the circle. Lett. Math. Phys. 2011;96:169–189.
  • Himonas A, Mantzavinos D. Hölder continuity for the Fokas--Olver--Rosenau--Qiao equation. J. Nonlinear Sci. 2014;24:1105–1124.
  • Holden H, Raynaud X. Global conservative solutions of the Camassa--Holm equation-a Lagrangian point of view. Commun. Partial Differ. Equ. 2007;32:1511–1549.
  • Holden H, Raynaud X. Dissipative solutions for the Camassa--Holm equation. Discrete Contin. Dyn. Syst. 2009;24:1047–1112.
  • Johnson R. Camassa--Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 2002;457:63–82.
  • Kato T. Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral theory and differential equations. Berlin: Springer Verlag; 1975. (Lecture Notes in Mathematics; vol. 70). p. 25–70.
  • Li Y, Olver P. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 2000;162:27–63.
  • Qiao Z. The Camassa--Holm hierarchy, related N-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold. Commun. Math. Phys. 2003;239:309–341.
  • Qiao Z. A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 2006;47:112701.
  • Rodriguez-Blanco G. On the Cauchy problem for the Camassa--Holm equation. Nonlinear Anal. 2001;46:309–327.
  • Taylor M. Partial differential equations III. Nonlinear Equations. Berlin: Springer; 1996.
  • Xia B, Qiao Z. A new two-component integrable system with peakon and weak kink solutions. Proc. R. Soc. A. 2015;471:20140750. doi:10.1098/rspa.2014.0750.
  • Xia B, Qiao Z. Multi-component generalization of the Camassa–Holm equation. J. Geom. Phys.. Forthcoming. Available from: http://arxiv.org/pdf/1310.0268.pdf. Oct. 2013.
  • Xin Z, Zhang P. On the weak solutions to a shallow water equation. Commun. Pure Appl. Math. 2000;53:1411–1433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.