Publication Cover
Applicable Analysis
An International Journal
Volume 97, 2018 - Issue 12
324
Views
0
CrossRef citations to date
0
Altmetric
Articles

Global weak solutions for a two-component Camassa–Holm system with an arbitrary smooth function

&
Pages 2085-2096 | Received 31 May 2017, Accepted 19 Jun 2017, Published online: 14 Jul 2017

References

  • Xia B, Qiao Z, Zhou R. A synthetical two-component model with peakon solutions. Stud Appl Math. 2015;135:248–276.
  • Xia B, Qiao Z. Multi-component generalization of the Camassa–Holm equation. J Geom Phys. 2016;107:35–44.
  • Zhang Z, Yin Z. Well-posedness, global existence and blow-up phenomena for an integrable multi-component Camassa–Holm system. Nonlinear Anal. 2016;142:112–133.
  • Hu Q, Qiao Z. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete Contin Dyn Syst. 2016;36:6975–7000.
  • Camassa R, Holm DD. An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993;71:1661–1664.
  • Constantin A, Lannes D. The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch Ration Mech Anal. 2009;192:165–186.
  • Boutet de Monvel A, Kostenko A, Shepelsky D, et al . Long-time asymptotics for the Camassa–Holm equation. SIAM J Math Anal. 2009;41:1559–1588.
  • Constantin A. On the scattering problem for the Camassa–Holm equation. Proc Roy Soc London A. 2001;457:953–970.
  • Constantin A, Gerdjikov VS, Ivanov RI. Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 2006;22:2197–2207.
  • Constantin A, McKean HP. A shallow water equation on the circle. Commun Pure Appl Math. 1999;52:949–982.
  • Fokas A, Fuchssteiner B. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D. 1981/1982;4:47–66.
  • Constantin A, Strauss WA. Stability of peakons. Commun Pure Appl Math. 2000;53:603–610.
  • Constantin A. The trajectories of particles in Stokes waves. Invent Math. 2006;166:523–535.
  • Constantin A. Particle trajectories in extreme Stokes waves. IMA J Appl Math. 2012;77:293–307.
  • Constantin A, Escher J. Particle trajectories in solitary water waves. Bull Amer Math Soc. 2007;44:423–431.
  • Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Ann Math. 2011;173:559–568.
  • Lyons T. Particle trajectories in extreme Stokes waves over infinite depth. Discrete Contin Dyn Syst. 2014;34:3095–3107.
  • Toland JF. Stokes waves. Topol Methods Nonlinear Anal. 1996;7:1–48.
  • Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun Pure Appl Math. 1998;51:475–504.
  • Danchin R. A few remarks on the Camassa–Holm equation. Differ Integral Equ. 2001;14:953–988.
  • Li J, Yin Z. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J Differ Equ. 2016;261:6125–6143.
  • Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier (Grenoble). 2000;50:321–362.
  • Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998;181:229–243.
  • Constantin A, Molinet L. Global weak solutions for a shallow water equation. Commun Math Phys. 2000;211:45–61.
  • Xin Z, Zhang P. On the weak solutions to a shallow water equation. Commun Pure Appl Math. 2000;53:1411–1433.
  • Bressan A, Constantin A. Global conservative solutions of the Camassa–Holm equation. Arch Ration Mech Anal. 2007;183:215–239.
  • Bressan A, Constantin A. Global dissipative solutions of the Camassa–Holm equation. Anal Appl. 2007;5:1–27.
  • Fokas A. On a class of physically important integrable equations. Physica D. 1995;87(1–4):145–150.
  • Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D. 1996;95:229–243.
  • Olver PJ, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E. 1996;53:1900–1906.
  • Qiao ZJ. A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys. 2006;47(11):112701–112900.
  • Fu Y, Gui G, Liu Y, et al . On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. J Differ Equ. 2013;255:1905–1938.
  • Gui G, Liu Y, Olver PJ, et al . Wave-breaking and peakons for a modified Camassa–Holm equation. Commun Math Phys. 2013;319:731–759.
  • Liu Y, Olver PJ, Qu C, et al . On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal Appl (Singap). 2014;12:355–368.
  • Yan K, Qiao Z, Yin Z. Qualitative analysis for a new integrable two-component Camassa–Holm system with peakon and weak kink solutions. Commun Math Phys. 2015;336:581–617.
  • Zhang Z, Yin Z. On the Cauchy problem for a four-component Camassa–Holm type system. Discrete Contin Dyn Syst. 2015;35:5153–5169.
  • Zheng R, Yin Z. Blow-up phenomena and global existence for a two-component Camassa–Holm system with an arbitrary smooth function. Nonlinear Anal. 2017;155:176–185.
  • Luo W, Yin Z. Global weak solutions for a three-component Camassa–Holm system with N-peakon solutions. IMA J Appl Math. 2016;81(6):1096–1111.
  • Natanson IP. Theory of functions of a real variable. NewYork: Frederick Ungar Publishing Co.; 1964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.