Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 1
219
Views
3
CrossRef citations to date
0
Altmetric
Articles

Traveling waves in an SEIR epidemic model with a general nonlinear incidence rate

, &
Pages 133-157 | Received 09 Sep 2017, Accepted 11 Jun 2018, Published online: 17 Jul 2018

References

  • Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond B. 1927;115:700–721. doi: 10.1098/rspa.1927.0118
  • Hosono Y, Ilyas B. Travelling waves for a simple diffusive epidemic model. Math Model Meth Appl. 1995;5(7):935–966. doi: 10.1142/S0218202595000504
  • Wang XS, Wang HY, Wu JH. Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin Dyn Syst. 2012;32(9):3303–3324. doi: 10.3934/dcds.2012.32.3303
  • Wang JB, Li WT, Yang FY. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun Nonlinear Sci Numer Simul. 2015;27(1):136–152. doi: 10.1016/j.cnsns.2014.04.025
  • Wang ZC, Wu JH. Traveling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc Lond Ser A Math Phys Eng Sci. 2010;466:237–261. doi: 10.1098/rspa.2009.0377
  • Li Y, Li WT, Yang FY. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl Math Comput. 2014;247:723–740.
  • Yang FY, Li WT, Wang ZC. Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal Real World Appl. 2015;23(7):129–147. doi: 10.1016/j.nonrwa.2014.12.001
  • Tian BC. Traveling waves for a diffusive SEIR epidemic model [Ph.D. thesis]; 2017.
  • Tian BC, Yuan R. Traveling waves for a diffusive SEIR epidemic model with non-local reaction and with standard incidences. Nonlinear Anal Real World Appl. 2017;37:162–181. doi: 10.1016/j.nonrwa.2017.02.007
  • Tian BC, Yuan R. Traveling waves for a diffusive SEIR epidemic model with standard incidences. Sci China Math. 2017;60:813–832. doi: 10.1007/s11425-016-0487-3
  • Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model. Math Biosci. 1978;42(1–2):43–61. doi: 10.1016/0025-5564(78)90006-8
  • Ruan S, Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J Differ Equ. 2003;188(1):135–163. doi: 10.1016/S0022-0396(02)00089-X
  • Liu W, Levin SA, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol. 1986;23(2):187–204. doi: 10.1007/BF00276956
  • Liu WM, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. 1987;25(4):359–380. doi: 10.1007/BF00277162
  • Feng Z, Thieme HR. Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model. SIAM J Appl Math. 2000;61(3):803–833. doi: 10.1137/S0036139998347834
  • Feng Z, Thieme HR. Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery. SIAM J Appl Math. 2000;61(3):983–1012. doi: 10.1137/S0036139998347846
  • Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized non-linear incidence. Math Biosci. 2004;189(1):75–96. doi: 10.1016/j.mbs.2004.01.003
  • Guo H, Li MY, Shuai Z. Global dynamics of a general class of multistage models for infectious diseases. SIAM J Appl Math. 2012;72(1):261–279. doi: 10.1137/110827028
  • Hu Z, Bi P, Ma W, Ruan S. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete Contin Dyn Syst Ser B. 2014;15(1):93–112. doi: 10.3934/dcdsb.2011.15.93
  • Huang G, Takeuchi Y. Global analysis on delay epidemiological dynamic models with nonlinear incidence. J Math Biol. 2011;63(1):125–139. doi: 10.1007/s00285-010-0368-2
  • Korobeinikov A. Global properties of infectious disease models with nonlinear incidence. Bull Math Biol. 2007;69(6):1871–1886. doi: 10.1007/s11538-007-9196-y
  • Shu H, Wang L, Watmough J. Global stability of a nonlinear viral infectionmodel with infinitely distributed intracellular delays and CTL immune responses. SIAM J Appl Math. 2013;73(3):1280–1302. doi: 10.1137/120896463
  • Yang Y, Xiao D. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete Contin Dyn Syst Ser B. 2010;13(1):195–211.
  • Bai Z, Wu SL. Traveling waves in a delayed SIR epidemic model with nonlinear incidence. Appl Math Comput. 2015;263:221–232.
  • Thieme HR, Zhao XQ. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J Differ Equ. 2003;195(2):430–470. doi: 10.1016/S0022-0396(03)00175-X
  • Zhao XQ, Wang W. Fisher waves in an epidemic model. Discrete Contin Dyn Syst Ser B. 2004;4(4):1117–1128. doi: 10.3934/dcdsb.2004.4.1117
  • Carr J, Chmaj A. Uniqueness of traveling waves for nonlocal monostable equations. Proc Amer Math Soc. 2004;132(8):2433–2439. doi: 10.1090/S0002-9939-04-07432-5
  • Widder DW. The Laplace transform. Princeton: Princeton University Press; 1941.
  • Xu ZT. Traveling waves for a diffusive SEIR epidemic model. Commun Pure Appl Anal. 2016;15(3):871–892. doi: 10.3934/cpaa.2016.15.871
  • Rees EL. Graphical discussion of the roots of a quartic equation. Am Math Mon. 1922;29(2):51–55. doi: 10.1080/00029890.1922.11986100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.