Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 3
183
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Trefftz Discontinuous Galerkin method for time-harmonic waves with a generalized impedance boundary condition

, &
Pages 379-406 | Received 26 Jul 2017, Accepted 28 Feb 2018, Published online: 19 Jul 2018

References

  • Trefftz E. Ein Gegenstuck zum Ritzschen Verfahren. Proc 2nd Int Cong Appl Mech Zurich. 1926;131–137.
  • Gander MJ, Wanner G. From Euler, Ritz, and Galerkin to modern computing. SIAM Rev. 2012;54:627–666. doi: 10.1137/100804036
  • Cessenat O, Després B. Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J Comput Acoust. 2003;11:227–238. doi: 10.1142/S0218396X03001912
  • Buffa A, Monk P. Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM Math Model Num Anal. 2008;42:925–940. doi: 10.1051/m2an:2008033
  • Gittelson C, Hiptmair R, Perugia I. Plane wave discontinuous Galerkin methods. ESAIM Math Model Num Anal. 2009;43:297–331. doi: 10.1051/m2an/2009002
  • Barucq H, Bendali A, Fares M'B, et al. A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation. J Comput Phys, 2017 Feb 1;330:1069–1092. Elsevier, 2016. doi: 10.1016/j.jcp.2016.09.062
  • Hofreither C. A non-standard finite element method using boundary integral operators [Ph.D. thesis]. Linz: J. Kepler University; 2012.
  • Hiptmair R, Moiola A, Perugia I. A survey of Trefftz methods for the Helmholtz Equation. In: Barrenechea G, Brezzi F, Cangiani A, Georgoulis E, editors. Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Vol. 114, Lecture Notes in Computational Science and Engineering. Cham: Springer; 2016. p. 237–278.
  • Gabard G. Discontinuous Galerkin methods with plane waves for time-harmonic problems. J Comput Phys. 2007;225:1961–1984. doi: 10.1016/j.jcp.2007.02.030
  • Bourgeois L, Chaulet N, Haddar H. Identification of generalized impedance boundary conditions: some numerical issues; 2010. (Rapport INRIA no.7449).
  • Bourgeois L, Chaulet N, Haddar H. Stable reconstruction of generalized impedance boundary conditions. Inverse Probl. 2011;27:095002.
  • Engquist B, Nédélec JC. Effective boundary condition for acoustic and electromagnetic scattering in thin layers; 1993. (Rapport Interne CMAP).
  • Vernhet L. Boundary element solution of a scattering problem involving a generalized impedance boundary condition. Math Methods Appl Sci. 1999;22:587–603. doi: 10.1002/(SICI)1099-1476(19990510)22:7<587::AID-MMA54>3.0.CO;2-B
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. 3rd ed. New York: Springer; 2013.
  • Babuška I, Melenk JM. The partition of unity method. Int J Numer Methods Eng. 1997;40:727–758. doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  • Farhat C, Harari I, Hetmaniuk U. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput Methods Appl Mech Eng. 2003;192:1389–1419. doi: 10.1016/S0045-7825(02)00646-1
  • Wang X, Bathe KJ. Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems. Int J Numer Meth Engng. 1997;40:2001–2017. doi: 10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W
  • Brenner SC, Gedicke J, Sung L-Y. Hodge decomposition for two-dimensional time harmonic Maxwell's equations: impedance boundary condition. Math Methods Appl Sci. Published online February 2015. DOI:10.1002/mma.3398.
  • Kapita S. Plane wave discontinuous Galerkin methods for acoustic scattering [PhD dissertation]. Newark (DE): University of Delaware; 2016.
  • Kapita S, Monk P. A plane wave discontinuous Galerkin method with a Dirichlet-to-Neumann boundary condition for the scattering problem in acoustics. J Comput Appl Math. 2018;327:208–225.
  • Koyama D. Error estimates of the finite element method for the exterior Helmholtz problem with a modified DtN boundary condition. J Comput Appl Math. 2009;232(1):109–121. doi: 10.1016/j.cam.2008.10.034
  • Hiptmair R, Moiola A, Perugia I. Error analysis of Trefftz-discontinuous Gerlerkin methods for the time-harmonic Maxwell equations. Math Comp. 2012;82:247–268. doi: 10.1090/S0025-5718-2012-02627-5
  • Buffa A. Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J Numer Anal. 2005;43:1–18. doi: 10.1137/S003614290342385X
  • Cakoni F, Colton D. Qualitative methods in inverse scattering theory. Berlin: Springer; 2006.
  • Abramowitz M, Stegun IA. Handbook of mathematical functions. National Bureau of Standards, U.S. Department of Commerce; 1972. (Applied mathematics series; vol. 55).
  • Girault V, Raviart PA. Finite element methods for Navier-Stokes equations: theory and algorithms. Berlin: Springer-Verlag; 1986.
  • Kress R. Fredholm's alternative for compact nilinear forms in reflexive Banach spaces. J Differ Eq. 1977;25:216–226. doi: 10.1016/0022-0396(77)90201-7
  • Schatz AH. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math Comp. 1974;28:959–962. doi: 10.1090/S0025-5718-1974-0373326-0
  • Kress R. Linear integral equations. 3rd ed. Berlin: Springer; 2014.
  • Hiptmair R, Moiola A, Perugia I. Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl Numer Math. 2014;79:79–91. doi: 10.1016/j.apnum.2012.12.004
  • Esterhazy S, Melenk JM. On stability of discretizations of the Helmholtz Equation. In: Graham I, Hou T, Lakkis O, Scheichl R, editors. Numerical analysis of multiscale problems. Vol. 83, Lecture Notes in Computational Science and Engineering. Berlin: Springer; 2012. p. 285–324.
  • Hiptmair R, Moiola A, Perugia I. Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J Numer Anal. 2011;49:264–284. doi: 10.1137/090761057
  • LEHRFEM: A 2D finite element toolbox. [cited 2016 Jan 5]. Available from: http://www2.math.ethz.ch/education/bachelor/lectures/fs2013/other/n_dgl/serien.html
  • Feng K. Asymptotic radiation conditions for reduced wave equation. J Comput Math. 1984;2:130–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.