Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 9
307
Views
29
CrossRef citations to date
0
Altmetric
Articles

The divDiv-complex and applications to biharmonic equations

&
Pages 1579-1630 | Received 19 Jun 2017, Accepted 26 Oct 2018, Published online: 30 Nov 2018

References

  • Krendl W, Rafetseder K, Zulehner W. A decomposition result for biharmonic problems and the Hellan–Herrmann–Johnson method. Electron Trans Numer Anal. 2016;45:257–282.
  • Hellan K. Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavia, CI 46; 1967.
  • Herrmann L. Finite element bending analysis for plates. J Eng Mech Div ASCE EM5. 1967;93:49–83.
  • Johnson C. On the convergence of a mixed finite-element method for plate bending problems. Numer Math. 1973;21:43–62. doi: 10.1007/BF01436186
  • Beirão da Veiga L, Niiranen J, Stenberg R. A posteriori error estimates for the Morley plate bending element. Numer Math. 2007;106(2):165–179. doi: 10.1007/s00211-007-0066-1
  • Huang J, Huang X, Xu Y. Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J Numer Anal. 2011;49(2):574–607. doi: 10.1137/090773374
  • Quenneville-Bĺair V. A new approach to finite element simulation of general relativity [PhD thesis]. New York (NY): APAM, Columbia University; Minneapolis (MN): University of Minnesota; 2015.
  • Arnold DN, Falk RS, Winther R. Finite element exterior calculus, homological techniques, and applications. Acta Numer. 2006;15:1–155. doi: 10.1017/S0962492906210018
  • Weck N. Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries. J Math Anal Appl. 1974;46:410–437. doi: 10.1016/0022-247X(74)90250-9
  • Picard R. An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math Z. 1984;187:151–164. doi: 10.1007/BF01161700
  • Picard R, Weck N, Witsch K-J. Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich). 2001;21:231–263.
  • Witsch K-J. A remark on a compactness result in electromagnetic theory. Math Methods Appl Sci. 1993;16:123–129. doi: 10.1002/mma.1670160205
  • Weber C. A local compactness theorem for Maxwell's equations. Math Methods Appl Sci. 1980;2:12–25. doi: 10.1002/mma.1670020103
  • Jochmann F. A compactness result for vector fields with divergence and curl in Lq(Ω) involving mixed boundary conditions. Appl Anal. 1997;66:189–203. doi: 10.1080/00036819708840581
  • Bauer S, Pauly D, Schomburg M. The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J Math Anal. 2016;48(4):2912–2943. doi: 10.1137/16M1065951
  • Picard R. Zur Theorie der harmonischen Differentialformen. Manuscripta Math. 1979;27:31–45. doi: 10.1007/BF01297736
  • Picard R. On the boundary value problems of electro- and magnetostatics. Proc R Soc Edinburgh Sect A. 1982;92:165–174. doi: 10.1017/S0308210500020023
  • Pauly D. On constants in Maxwell inequalities for bounded and convex domains. Zapiski POMI. 2014;435:46–54 & J. Math. Sci. (N.Y.), 210(6):787–792, 2015.
  • Pauly D. On Maxwell's and Poincaré's constants. Discrete Contin Dyn Syst Ser S. 2015;8(3):607–618. doi: 10.3934/dcdss.2015.8.607
  • Pauly D. On the Maxwell constants in 3D. Math Methods Appl Sci. 2017;40(2):435–447. doi: 10.1002/mma.3324
  • Costabel M, McIntosh A. On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math Z. 2010;265(2):297–320. doi: 10.1007/s00209-009-0517-8
  • Hiptmair R, Li J, Zou J. Universal extension for Sobolev spaces of differential forms and applications. J Funct Anal. 2012;263(2):364–382. doi: 10.1016/j.jfa.2012.04.016
  • Bogovskii ME. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl Akad Nauk SSSR. 1979;248(5):1037–1040. Russian.
  • Bogovskii ME. Solutions of some problems of vector analysis, associated with the operators div and grad. Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad Nauk SSSR Sibirsk Otdel Inst Mat Novosibirsk. 1980;1:5–40. Russian.
  • Galdi GP. An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems. 2nd ed. New York (NY): Springer; 2011. (Springer Monographs in Mathematics).
  • Sohr H. The Navier–Stokes equations. Basel: Birkhäuser; 2001.
  • Lions J-L, Magenes E. Non-homogeneous boundary value problems and applications. Vol. I. New York, Heidelberg: Springer-Verlag; 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
  • Nečas J. Direct methods in the theory of elliptic equations. Heidelberg: Springer; 2012. (Springer Monographs in Mathematics). Translated from the 1967 French original by Gerard Tronel and Alois Kufner.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.