Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 2
1,190
Views
5
CrossRef citations to date
0
Altmetric
Articles

Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates

ORCID Icon &
Pages 253-274 | Received 11 Apr 2018, Accepted 22 Mar 2019, Published online: 07 Apr 2019

References

  • Dreyer W, Guhlke C, Müller R. Overcoming the shortcomings of the Nernst–Planck model. Phys Chem Chem Phys. 2013;15:7075–7086. doi: 10.1039/c3cp44390f
  • Dreyer W, Guhlke C, Müller R. Modeling of electrochemical double layers in thermodynamic non-equilibrium. Phys Chem Chem Phys. 2015;17:27176–27194. doi: 10.1039/C5CP03836G
  • Fuhrmann J. Comparison and numerical treatment of generalized Nernst–Planck models. Comput Phys Commun. 2015;196:166–178. doi: 10.1016/j.cpc.2015.06.004
  • Fuhrmann J, Guhlke C, Linke A, et al. Models and numerical methods for electrolyte flows. WIAS Preprint. 2018;2525. Available from: http://www.wias-berlin.de/preprint/2525/wias_preprints_2525.pdf.
  • Burger M, Schlake B, Wolfram MT. Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries. Nonlinearity. 2012;25:961–990. doi: 10.1088/0951-7715/25/4/961
  • Herz M, Ray N, Knabner P. Existence and uniqueness of a global weak solution of a Darcy–Nernst–Planck–Poisson system. GAMM–Mitt. 2012;35:191–208. doi: 10.1002/gamm.201210013
  • Roubíček T. Incompressible ionized non-Newtonean fluid mixtures. SIAM J Math Anal. 2007;39:863–890. doi: 10.1137/060667335
  • Roubíček T. Incompressible ionized fluid mixtures: a non-Newtonian approach. IASME Trans. 2005;2:1190–1197.
  • Kovtunenko VA, Zubkova AV. Solvability and Lyapunov stability of a two-component system of generalized Poisson–Nernst–Planck equations. In: Maz'ya V, Natroshvili D, Shargorodsky E, Wendland WL, editors. Recent trends in operator theory and partial differential equations (The Roland Duduchava Anniversary Volume), Operator theory: advances and applications; Vol. 258. Basel: Birkhaeuser; 2017. p. 173–191.
  • Kovtunenko VA, Zubkova AV. On generalized Poisson–Nernst–Planck equations with inhomogeneous boundary conditions: a-priori estimates and stability. Math Meth Appl Sci. 2017;40:2284–2299.
  • Kovtunenko VA, Zubkova AV. Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium. Kinet Relat Mod. 2018;11(1):119–135. doi: 10.3934/krm.2018007
  • Allaire G, Brizzi R, Dufrêche JF, et al. Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients. Comp Geosci. 2013;17:479–495. doi: 10.1007/s10596-013-9342-6
  • Belyaev AG, Pyatnitskii AL, Chechkin GA. Averaging in a perforated domain with an oscillating third boundary condition. Mat Sb. 2001;192:3–20. doi: 10.4213/sm576
  • Evendiev M, Zelik SV. Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization. Ann Instit H Poincare. 2002;19:961–989. doi: 10.1016/S0294-1449(02)00115-4
  • Mielke A, Reichelt S, Thomas M. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. J Netw Heterog Media. 2014;9(2):353–382. doi: 10.3934/nhm.2014.9.353
  • Sazhenkov SA, Sazhenkova EV, Zubkova AV. Small perturbations of two-phase fluid in pores: Effective macroscopic monophasic viscoelastic behavior. Sib Èlektron Mat Izv. 2014;11:26–51.
  • Zhikov VV, Kozlov SM, Oleinik OA. Homogenization of differential operators and integral functionals. Berlin: Springer-Verlag; 1994.
  • Bunoiu R, Timofte C. Homogenization of a thermal problem with flux jump. Netw Heterog Media. 2016;11:545–562. doi: 10.3934/nhm.2016009
  • Gagneux G, Millet O. Homogenization of the Nernst–Planck–Poisson system by two-scale convergence. J Elast. 2014;114:69–84. doi: 10.1007/s10659-013-9427-4
  • Gahn M, Neuss-Radu M, Knabner P. Homogenization of reaction-diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface. SIAM J App Math. 2016;76:1819–1843. doi: 10.1137/15M1018484
  • Khoa VA, Muntean A. Corrector homogenization estimates for a non-stationary Stokes–Nernst–Planck–Poisson system in perforated domains. arXiv:1710.09166v1 [math.NA]. 2017; Available from: https://arxiv.org/abs/1710.09166v1.
  • Ray N, Eck C, Muntean A, et al. Variable choices of scaling in the homogenization of a Nernst–Planck–Poisson problem. Vol. 344. Erlangen-Nürnberg: Inst. für Angewandte Mathematik; 2011.
  • Schmuck M, Bazant MZ. Homogenization of the Poisson–Nernst–Planck equations for ion transport in charged porous media. SIAM J Appl Math. 2015;75:1369–1401. doi: 10.1137/140968082
  • Fellner K, Kovtunenko VA. A discontinuous Poisson–Boltzmann equation with interfacial transfer: homogenisation and residual error estimate. Appl Anal. 2016;95:2661–2682. doi: 10.1080/00036811.2015.1105962
  • Efendiev Y, Iliev O, Taralova V. Upscaling of an isothermal li-ion battery model via the homogenization theory. Berichte des Fraunhofer ITWM. 2013;230. Available from: http://publica.fraunhofer.de/documents/N-256468.html.
  • Allaire G, Brizzi R, Dufrêche JF, et al. Role of nonideality for the ion transport in porous media: derivation of the macroscopic equations using upscaling. Phys D. 2014;282:39–60. doi: 10.1016/j.physd.2014.05.007
  • Allaire G, Mikelić A, Piatnitski A. Homogenization of the linearized ionic transport equations in rigid periodic porous media. J Math Phys. 2010;51:123103. doi: 10.1063/1.3521555
  • Hummel HK. Homogenization for heat transfer in polycrystals with interfacial resistances. Appl Anal. 2000;75:403–424. doi: 10.1080/00036810008840857
  • Cioranescu D, Damlamian A, Donato P, et al. The periodic unfolding method in domains with holes. SIAM J Math Anal. 2012;44(2):718–760. doi: 10.1137/100817942
  • Franců J. Modification of unfolding approach to two-scale convergence. Math Bohem. 2010;135:403–412.
  • Khludnev MA, Kovtunenko VA. Analysis of cracks in solids. Southampton–Boston: WIT Press; 2000.