Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 9
189
Views
3
CrossRef citations to date
0
Altmetric
Articles

Wave propagation of a diffusive epidemic model with latency and vaccination

, &
Pages 1972-1995 | Received 12 Mar 2019, Accepted 21 Sep 2019, Published online: 04 Oct 2019

References

  • Kermack WO, Mckendrick AG. A contribution to the mathematical theory of epidemics. Proc Roy Soc Lond A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118
  • Fenner F, Henderson DA, Arita I. Smallpox and its eradication. Ganeve: World Health Organization; 1988.
  • Bonmarin I, Santaolalla P, vybruhl DL. Modelling the impact of vaccination on the epidemiology of varicella zoster virus. Rev Epidemiol Sante. 2008;56:323–331. doi: 10.1016/j.respe.2008.07.087
  • D'Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model. Math Biosci. 2002;179:57–72. doi: 10.1016/S0025-5564(02)00095-0
  • Li JQ, Ma ZE. Global analysis of SIS epidemic models with variable total population size. Math Comput Model. 2004;39:1231–1242. doi: 10.1016/j.mcm.2004.06.004
  • Pei YZ, Liu SY, Chen LS, et al. Two different vaccination strategies in an SIR epidemic model with saturated infectious force. Int J Biomath. 2008;1:147–160. doi: 10.1142/S1793524508000126
  • Gumel AB, Moghadas SM. A qualitative study of a vaccination model with non-linear incidence. Appl Math Comput. 2003;143:409–419.
  • W.H. Organization. WHO Expert Consultation on Rabies. 2005. World Health Organization Technical Report, 931.
  • Guo ZM, Wang FB, Zou XF. Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol. 2012;65:1387–1410. doi: 10.1007/s00285-011-0500-y
  • Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model. Math Biosci. 1978;42:41–61. doi: 10.1016/0025-5564(78)90006-8
  • Li Y, Li WT, Lin G. Traveling waves of a delayed diffusive SIR epidemic model. Commun Pure Appl Anal. 2015;14:1001–1022. doi: 10.3934/cpaa.2015.14.1001
  • Xu R. Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl Math Model. 2012;36:5293–5300. doi: 10.1016/j.apm.2011.12.037
  • Thieme HR. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math. 2009;70:188–211. doi: 10.1137/080732870
  • Van DP, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6
  • Dunbar SR. Travelling wave solutions of diffusive Lotka-Volterra equations. J Math Biol. 1983;17:11–32. doi: 10.1007/BF00276112
  • Li WT, Wang JB, Zhao X-Q. Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J Nonlinear Sci. 2018;28:1189–1219. doi: 10.1007/s00332-018-9445-2
  • Lin G, Ruan SG. Traveling wave solutions for delayed reaction diffusion systems and applications to diffusive Lotka Volterra competition models with distributed delays. J Dynam Differ Equ. 2014;26:583–605. doi: 10.1007/s10884-014-9355-4
  • Wang JB, Zhao X-Q. Uniqueness and global stability of forced waves in a shifting environment. Proc Amer Math Soc. 2019;147:1467–1481. doi: 10.1090/proc/14235
  • Bartlett M. Deterministic and stochastic models for recurrent epidemics, Vol. 4, University of California Press; 1956. p. 81–108.
  • Fang J, Zhao X-Q. Bistable traveling waves for monotone semiflows with applications. J Eur Math Soc. 2015;17:2243–2288. doi: 10.4171/JEMS/556
  • Liang X, Zhao X-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun Pure Appl Math. 2010;60:1–40. doi: 10.1002/cpa.20154
  • Bai Z, Wu SL. Traveling waves in a delayed SIR epidemic model with nonlinear incidence. Appl Math Comput. 2015;263:221–232.
  • Hosono Y, Ilyas B. Traveling waves for a simple diffusive epidemic model. Math Models Methods Appl Sci. 1995;05:935–966. doi: 10.1142/S0218202595000504
  • Tian BC, Yuan R. Traveling waves for a diffusive SEIR epidemic model with standard incidences. Sci China Math. 2017;60:813–832. doi: 10.1007/s11425-016-0487-3
  • Wang JB, Li WT, Yang FY. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun Nonlinear Sci Numer Simul. 2015;27:136–152. doi: 10.1016/j.cnsns.2015.03.005
  • Wang W, Ma WB. Block effect on HCV infection by HMGB1 released from virus-infected cells: an insight from mathematical modeling. Commun Nonlinear Sci Numer Simul. 2018;59:488–514. doi: 10.1016/j.cnsns.2017.11.024
  • Wang XS, Wang HY, Wu JH. Travelings waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin Dyn Syst. 2012;32:3303–3324. doi: 10.3934/dcds.2012.32.3303
  • Yang FY, Li WT, Wang ZC. Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal Real World Appl. 2015;23:129–147. doi: 10.1016/j.nonrwa.2014.12.001
  • Zhao L, Wang ZC, Ruan SG. Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity. 2017;30:1287–1325. doi: 10.1088/1361-6544/aa59ae
  • Zhao L, Wang ZC, Ruan SG. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J Math Biol. 2018;77:1871–1915. doi: 10.1007/s00285-018-1227-9
  • Wang W, Ma WB. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete Contin Dyn Syst Ser B. 2018;23:3213–3235.
  • Wang W, Zhang TQ. Caspase-1-Mediated pyroptosis of the predominance for driving CD4+T cells death: A nonlocal spatial mathematical model. Bull Math Biol. 2018;80:540–582. doi: 10.1007/s11538-017-0389-8
  • Fang J, Wu JH. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete Contin Dyn Syst. 2012;32:3043–3058. doi: 10.3934/dcds.2012.32.3043
  • Wu JH. Theory and applications of partial functional differential equations. New York: Springer; 1996.
  • Martin RH, Smith HL. Abstract functional-differential equations and reaction-diffusion systems. Trans Amer Math Soc. 1990;321:1–44.
  • Chen ZQ, Zhao Z. Harnack principle for weakly coupled elliptic systems. J Differ Equ. 1997;139:261–282. doi: 10.1006/jdeq.1997.3300
  • Ducrot A, Magal P. Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity. 2011;24:2891–2911. doi: 10.1088/0951-7715/24/10/012
  • Huang G, Takeuchi Y, Ma WB, et al. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull Math Biol. 2010;72:1192–1207. doi: 10.1007/s11538-009-9487-6
  • Lin G. Invasion traveling wave solutions of a predator-prey system. Nonlinear Anal. 2014;96:47–58. doi: 10.1016/j.na.2013.10.024
  • Hirsch WM, Hanisch H, Gabriel JP. Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun Pure Appl Math. 1985;38:733–753. doi: 10.1002/cpa.3160380607
  • Smith HL, Zhao X-Q. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J Math Anal. 2000;31:514–534. doi: 10.1137/S0036141098346785
  • Thieme HR, Zhao X-Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J Differ Equ. 2003;195:430–470. doi: 10.1016/S0022-0396(03)00175-X
  • Ducrot A. Spatial propagation for a two component reaction diffusion system arising in population dynamics. J Differ Equ. 2016;260:8316–8357. doi: 10.1016/j.jde.2016.02.023
  • Li WT, Ruan S, Wang ZC. On the diffusive Nicholson's blowflies equation with nonlocal delay. J Nonlinear Sci. 2007;17:505–525. doi: 10.1007/s00332-007-9003-9
  • Wu CF, Weng PX. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete Contin Dyn Syst Ser B. 2012;15:867–892. doi: 10.3934/dcdsb.2011.15.867

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.