Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 12
195
Views
2
CrossRef citations to date
0
Altmetric
Articles

The Cauchy problem of the rotation Camassa–Holm equation in equatorial water waves

&
Pages 2547-2563 | Received 09 Jun 2019, Accepted 07 Nov 2019, Published online: 21 Nov 2019

References

  • Chen R, Gui G, Liu Y. On a shallow-water approximation to the Green–Naghdi equations with the Coriolis effect. Adv Math. 2018;340:106–137. doi: 10.1016/j.aim.2018.10.003
  • Gui G, Liu Y, Sun J. A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J Math Fluid Mech. 2019;21:27. doi: 10.1007/s00021-019-0432-7
  • Constantin A, Johnson RS. Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem. Phys Fluids. 2019;31:021401. doi: 10.1063/1.5083088
  • Constantin A, Johnson RS. The dynamics of waves interacting with the equatorial undercurrent. Geophys Astrophys Fluid Dyn. 2015;109:311–358. doi: 10.1080/03091929.2015.1066785
  • Johnson RS. Camassa–Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech. 2002;455:63–82. doi: 10.1017/S0022112001007224
  • Constantin A, Lannes D. The hydrodynamical relevance of the Camassa–Holm and Degasperis-Procesi equations. Arch Ration Mech Anal. 2009;192:165–186. doi: 10.1007/s00205-008-0128-2
  • Gui G, Liu Y, Luo T. Model equations and travelling wave solutions for shallow-water waves with the Coriolis effect. J Nonlinear Sci. 2019;29:993–1039. doi: 10.1007/s00332-018-9510-x
  • Camassa R, Holm DD. An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993;71:1661–1664. doi: 10.1103/PhysRevLett.71.1661
  • Constantin A. On the scattering problem for the Camassa–Holm equation.  R Soc Lond Proc Ser A Math Phys Eng Sci. 2001;457:953–970. doi: 10.1098/rspa.2000.0701
  • Constantin A, Gerdjikov VS, Ivanov R. Inverse scattering transform for the Camassa–Holm equation. Inverse Problems. 2006;22:2197–2207. doi: 10.1088/0266-5611/22/6/017
  • Constantin A, McKean HP. A shallow water equation on the circle. Comm Pure Appl Math. 1999;52:949–982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
  • Constantin A. The Hamiltonian structure of the Camassa–Holm equation. Expo Math. 1997;15:53–85.
  • Fokas A, Fuchssteiner B. Symplectures, their Bäcklund transformations and hereditary symmetyies. Phys D. 1981/82;4:47–66. doi: 10.1016/0167-2789(81)90004-X
  • Camassa R, Holm L, Hyman JM. A new integrable shallow-water equation. Adv Appl Mech. 1994;31:1–33. doi: 10.1016/S0065-2156(08)70254-0
  • Constantin A, Strauss WA. Stability of peakons. Comm Pure Appl Math. 2000;53:603–610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
  • Constantin A, Strauss WA. Stability of a class of solitary waves incompressible elastic rods. Phys Lett A. 2000;270:140–148. doi: 10.1016/S0375-9601(00)00255-3
  • Constantin A. The trajectories of particles in Stokes waves. Invent Math. 2006;166:523–535. doi: 10.1007/s00222-006-0002-5
  • Constantin A. Particle trajectories in extreme Stokes waves. IMA J Appl Math. 2012;77:293–307. doi: 10.1093/imamat/hxs033
  • Constantin A, Escher J. Particle trajectories in solitary water waves. Bull Amer Math Soc. 2007;44:423–431. doi: 10.1090/S0273-0979-07-01159-7
  • Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Ann Math. 2011;173:559–568. doi: 10.4007/annals.2011.173.1.12
  • Toland JF. Stokes waves. Topol Methods Nonlinear Anal. 1996;7:1–48. doi: 10.12775/TMNA.1996.001
  • Brandolese L, Cortes MF. Blowup issues for a class of nonlinear dispersive wave equations. J Differ Equations. 2014;256:3981–3998. doi: 10.1016/j.jde.2014.03.008
  • Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier (Grenoble). 2000;50:321–362. doi: 10.5802/aif.1757
  • Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Sc Norm Super Pisa Cl Sci. 1998;26:303–328.
  • Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math. 1998;51:475–504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
  • Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998;181:229–243. doi: 10.1007/BF02392586
  • Danchin R. A few remarks on the Camassa–Holm equation. Differ Integral Equations. 2001;14:953–988.
  • Guo Z, Liu X, Molinet L. Ill-posedness of the Camassa–Holm and related equations in the critical space. J Differ Equations. 2019;266:1698–1707. doi: 10.1016/j.jde.2018.08.013
  • Liu Y. Global existence and blow-up solutions for a nonlinear shallow water equation. Math Ann. 2006;335:717–735. doi: 10.1007/s00208-006-0768-1
  • Li YA, Olver PJ. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differ Equations. 2000;162:27–63. doi: 10.1006/jdeq.1999.3683
  • Li J, Yin Z. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J Differ Equations. 2016;261:6125–6143. doi: 10.1016/j.jde.2016.08.031
  • Rodríguez-Blanco G. On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. 2001;46:309–327. doi: 10.1016/S0362-546X(01)00791-X
  • Yin Z. Well-posedness,  blowup, and global existence for an integrable shallow water equation. Discrete Contin Dyn Syst. 2004;11:393–411. doi: 10.3934/dcds.2004.11.393
  • Bressan A, Constantin A. Global conservative solutions of the Camassa–Holm equation. Arch Ration Mech Anal. 2007;183:215–239. doi: 10.1007/s00205-006-0010-z
  • Bressan A, Constantin A. Global dissipative solutions of the Camassa–Holm equation. Anal Appl. 2007;5:1–27. doi: 10.1142/S0219530507000857
  • Constantin A, Molinet L. Global weak solutions for a shallow water equation. Comm Math Phys. 2000;211:45–61. doi: 10.1007/s002200050801
  • Holden H, Raynaud X. Global conservative solutions of the generalized hyperelastic-rod wave equation. J Differ Equations. 2007;233:448–484. doi: 10.1016/j.jde.2006.09.007
  • Holden H, Raynaud X. Global conservative solutions of the Camassa–Holm equation: a Lagrangian point of view. Comm Partial Differ Equations. 2007;32:1–27. doi: 10.1080/03605300601088674
  • Xin Z, Zhang P. On the weak solutions to a shallow water equation. Comm Pure Appl Math. 2000;53:1411–1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
  • Bahouri H, Chemin JY, Danchin R. Fourier analysis and nonlinear partial differential equations. Berlin: Springer-Verlag; 2011.
  • He H, Yin Z. On a generalized Camassa–Holm equation with the flow generated by velocity and its gradient. Appl Anal. 2017;96:679–701. doi: 10.1080/00036811.2016.1151498
  • Yin Z. On the Cauchy problem for the generalized Camassa–Holm equation. Nonlinear Anal. 2007;66:460–471. doi: 10.1016/j.na.2005.11.040
  • Constantin A, Escher J. On the Cauchy problem for a family of quasilinear hyperbolic equations. Comm Partial Differ Equations. 1998;23:1449–1458. doi: 10.1080/03605309808821389
  • Kato T, Ponce G. Commutator eatimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math. 1988;41:891–907. doi: 10.1002/cpa.3160410704
  • Coclite GM, Holden H, Karlsen KH. Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J Math Anal. 2005;37:1044–1069. doi: 10.1137/040616711

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.