123
Views
5
CrossRef citations to date
0
Altmetric
Articles

The Krein–von Neumann extension revisited

, ORCID Icon, , , &
Pages 1593-1616 | Received 17 Nov 2020, Accepted 30 May 2021, Published online: 27 Jun 2021

References

  • Faris WG. Self-adjoint operators. Berlin: Springer; 1975. (Vol. 433, Lecture Notes in Mathematics).
  • Kato T. Perturbation theory for linear operators. corr. printing of the 2nd edn. Berlin: Springer; 1980.
  • Krein MG. The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I. Mat Sbornik. 1947;20:431–495. (Russian).
  • Alonso A, Simon B. The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators. J Operator Theory. 1980;4:251–270; ; Addenda: 6, 407 (1981).
  • Arlinski Yu. M, Tsekanovski ER. The von Neumann problem for nonnegative symmetric operators. Integr Equ Oper Theory. 2005;51:319–356.
  • von Neumann J. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math Ann. 1929–30;102:49–131.
  • Krein MG. The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II. Mat Sbornik. 1947;21:365–404. (Russian).
  • Gesztesy F, Littlejohn LL, Nichols R. On self-adjoint boundary conditions for singular Sturm–Liouville operators bounded from below. J Differ Equ. 2020;269:6448–6491.
  • Gesztesy F, Zinchenko M. Sturm–Liouville Operators, Their Spectral Theory, and Some Applications. in preparation.
  • Leighton W, Morse M. Singular quadratic functionals. Trans Am Math Soc. 1936;40:252–286.
  • Rellich F. Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.). Math Z. 1943/44;49:702–723. (German).
  • Rellich F. Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math Ann. 1951;122:343–368. (German).
  • Hartman P, Wintner A. On the assignment of asymptotic values for the solutions of linear differential equations of second order. Am J Math. 1955;77:475–483.
  • Clark S, Gesztesy F, Nichols R. Principal solutions revisited. in Stochastic and Infinite Dimensional Analysis. C. C. Bernido, M. V. Carpio-Bernido, M. Grothaus, T. Kuna, M. J. Oliveira, and J. L. da Silva (eds.), Trends in Mathematics, Birkhäuser, Springer, pp. 85–117. 2016.
  • Dunford N, Schwartz JT. Linear operators. part II: spectral theory. New York: Wiley Interscience; 1988.
  • Hartman P. Ordinary differential equations. Philadelphia: SIAM; 2002.
  • Niessen H-D, Zettl A. Singular Sturm–Liouville problems: the Friedrichs extension and comparison of eigenvalues. Proc London Math Soc (3). 1992;64:545–578.
  • Zettl A. Sturm–Liouville theory. Providence, RI: Amer. Math. Soc.; 2005. (Vol. 121, Mathematical Surveys and Monographs).
  • Kalf H. A characterization of the Friedrichs extension of Sturm–Liouville operators. J London Math Soc (2). 1978;17:511–521.
  • Rosenberger R. A new characterization of the Friedrichs extension of semibounded Sturm–Liouville operators. J London Math Soc (2). 1985;31:501–510.
  • Akhiezer NI, Glazman IM. Theory of linear operators in Hilbert space, Vol. II. Boston: Pitman; 1981.
  • Coddington EA, Levinson N. Theory of ordinary differential equations. Malabar, FL: Krieger Publ.; 1985.
  • Jörgens K, Rellich F. Eigenwerttheorie Gewöhnlicher Differentialgleichungen. Berlin: Springer-Verlag; 1976.
  • Naimark MA. Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Transl. by E. R. Dawson, Engl. translation edited by W. N. Everitt, Ungar Publishing, New York. 1968.
  • Pearson DB. Quantum scattering and spectral theory. London: Academic Press; 1988.
  • Teschl G. Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, 2nd ed., Graduate Studies in Math., Vol. 157, Amer. Math. Soc., RI. 2014.
  • Weidmann J. Linear operators in Hilbert spaces. New York: Springer; 1980. (Vol. 68, Graduate Texts in Mathematics).
  • Weidmann J. Lineare Operatoren in Hilberträumen. Teil II: Anwendungen. Stuttgart: Teubner; 2003.
  • Ando T, Nishio K. Positive selfadjoint extensions of positive symmetric operators. Tohoku Math J (2). 1970;22:65–75.
  • Yu.M., Arlinskii, S., Hassi, Z., Sebestyén, H.S.V., de Snoo: ‘On the class of extremal extensions of a nonnegative operator, in Recent Advances in Operator Theory and Related Topics. L. Kérchy, C. Foias, I. Gohberg, and H. Langer (eds.), Operator Theory: Advances and Applications, Vol. 127, Birkhäuser, Basel, 2001, pp. 41–81.
  • Yu., Arlinski, E., Tsekanovski: ‘M.Kren's research on semibounded operators, its contemporary developments, and applications’, in V., Adamyan, Y.M., Berezansky, I., Gohberg, M.L., Gorbachuk, V., Gorbachuk, A.N., Kochubei, H., Langer, G., Popov (Eds.): ‘Modern analysis and applications. the Mark Krein centenary conference. Operator theory: advances and applications’, vol. 1 (Birkhäuser, Basel, 2009), pp. 65–112.
  • Ashbaugh MS, Gesztesy F, Mitrea M, Teschl G. Spectral theory for perturbed Krein Laplacians in nonsmooth domains. Adv Math. 2010;223:1372–1467.
  • Ashbaugh MS, Gesztesy F, Mitrea M, Shterenberg R, Teschl G. The Krein–von Neumann extension and its connection to an abstract buckling problem. Math Nachr. 2010;283:165–179.
  • Ashbaugh MS, Gesztesy F, Mitrea M, Shterenberg R, Teschl G. A survey on the Krein–von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in non smooth domains. in Mathematical Physics, Spectral Theory and Stochastic Analysis, M. Demuth and W. Kirsch (eds.), Operator Theory: Advances and Applications, Vol. 232, Birkhäuser, Springer, Basel, pp. 1–106. 2013.
  • Ashbaugh MS, Gesztesy F, Laptev A, Mitrea M, Sukhtaiev S. A bound for the eigenvalue counting function for Krein–von Neumann and Friedrichs extensions. Adv Math. 2017;304:1108–1155.
  • Behrndt J, Hassi S, de Snoo H. Boundary value problems, Weyl functions, and differential operators. Springer: Birkhäuser; 2020. (vol. 105, Monographs in Math.).
  • Sh. Birman M. On the theory of self-adjoint extensions of positive definite operators. Mat Sbornik. 1956;38:431–450. (Russian.).
  • Derkach VA, Malamud MM. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J Funct Anal. 1991;95:1–95.
  • Derkach VA, Malamud MM. The extension theory of Hermitian operators and the moment problem. J Math Sci. 1995;73:141–242.
  • Grubb G. Spectral asymptotics for the “soft” selfadjoint extension of a symmetric elliptic differential operator. J Oper Theory. 1983;10:9–20.
  • Grubb G. Distributions and operators. New York: Springer; 2009. (Vol. 252, Graduate Texts in Mathematics).
  • Hassi S, Malamud M, de Snoo H. On Kren's extension theory of nonnegative operators. Math Nachr. 2004;274–275:40–73.
  • Hassi S, Sandovici A, de Snoo H, Winkler H. A general factorization approach to the extension theory of nonnegative operators and relations. J Operator Theory. 2007;58:351–386.
  • Nenciu G. Applications of the Kren resolvent formula to the theory of self-adjoint extensions of positive symmetric operators. J Operator Theory. 1983;10:209–218.
  • Prokaj V, Sebestyén Z. On extremal positive operator extensions. Acta Sci Math (Szeged). 1996;62:485–491.
  • Sebestyén Z, Sikolya E. On Krein–von Neumann and Friedrichs extensions. Acta Sci Math (Szeged). 2003;69:323–336.
  • Simon B. The classical moment problem as a self-adjoint finite difference operator. Adv Math. 1998;137:82–203.
  • Skau CF. Positive self-adjoint extensions of operators affiliated with a von Neumann algebra. Math Scand. 1979;44:171-195.
  • Storozh OG. On the hard and soft extensions of a nonnegative operator. J Math Sci. 1996;79:1378–1380.
  • traus AV. On extensions of a semibounded operator. Sov Math Dokl. 1973;14:1075–1079.
  • Tsekanovskii ER. Friedrichs and Krein extensions of positive operators and holomorphic contraction semigroups. Funct Anal Appl. 1981;15:308–309.
  • Viik ML. On general boundary problems for elliptic differential equations. Trudy Moskov Mat Obsc. 1952;1:187–246 (Russian); Engl. transl. in Amer. Math. Soc. Transl. (2), 24, 107–172 (1963).
  • Gesztesy F, Kalton N, Makarov K, Tsekanovskii E. Some applications of operator-valued Herglotz functions. in Operator Theory, System Theory and Related Topics. The Moshe Livsic Anniversary Volume, D. Alpay and V. Vinnikov (eds.), Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, pp. 271–321. 2001.
  • Clark S, Gesztesy F, Nichols R, Zinchenko M. Boundary data maps and Krein's resolvent formula for Sturm–Liouville operators on a finite interval. Oper Matrices. 2014;8:1–71.
  • Gesztesy F, Nichols R, Stanfill J. A Survey of Some Norm Inequalities. Comp Anal Oper Theo. 2021;15(23).
  • Kamke E. Differentialgleichungen. Lösungsmethoden und Lösungen. gewöhnliche Differentialgleichungen. 7th edn. Leipzig: Akademische Verlagsgesellschaft; 1961.
  • Abramowitz M, Stegun IA. Handbook of mathematical functions. New York: Dover; 1972.
  • Belinskiy BP, Hinton DB, Nichols R. Singular Sturm–Liouville operators with extreme properties that generate black holes. Stud Appl Math. 2021:1–29. DOI:https://doi.org/10.1111/sapm.12385.
  • Gesztesy F, Littlejohn LL, Piorkowski M, Stanfill J. The Jacobi operator and its Weyl–Titchmarsh–Kodaira m-functions. preprint. 2020.
  • Bush M, Frymark D, Liaw C. Singular boundary conditions for Sturm–Liouville operators via perturbation theory. preprint. 2020.
  • Everitt WN. A catalogue of Sturm–Liouville differential equations. in Sturm–Liouville Theory: Past and Present. W. O. Amrein, A. M. Hinz, D. B. Pearson (eds.), Birkhäuser, Basel, pp. 271–331. 2005.
  • Everitt WN, Kwon KH, Littlejohn LL, Wellman R, Yoon GJ. Jacobi Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J Comput Appl Math. 2007;208:29–56.
  • Frymark D. Boundary triples and Weyl m-functions for powers of the Jacobi differential operator. J Differ Equ. 2020;269:7931–7974.
  • Grünewald U. Jacobische Differentialoperatoren. Math Nachr. 1974;63:239–253.
  • Koornwinder T, Kostenko A, Teschl G. Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv Math. 2018;333:796–821.
  • Kuijlaars A, Martinez-Finkelshtein A, Orive R. Orthogonality of Jacobi polynomials with general parameters. Electron Trans Numer Anal. 2005;19:1–17.
  • Olver FW, Lozier DW, Boisvert RF, Clark CW. NIST Handbook of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15.
  • Szeg G. Orthogonal Polynomials. 4th edn, Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI. 1975.
  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds.) NIST Handbook of Mathematical Functions. National Institute of Standards and Technology (NIST), U.S. Dept. of Commerce, and Cambridge Univ. Press. 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.