Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 2
115
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the heart-torso conductivity parameters recovery inverse problem in cardiac electrophysiology ECG modelling

, , &
Pages 494-523 | Received 29 Mar 2021, Accepted 09 Jul 2021, Published online: 21 Jul 2021

References

  • Nguyen DM, Qian P, Barry T, et al. The region-of-interest based measurement selection process for electrical impedance tomography in radiofrequency cardiac ablation with known anatomical information. Biomed Signal Process Control. 2020;56:101706.
  • Sulkin MS, Laughner JI, Hilbert S, et al. Novel measure of local impedance predicts catheter–tissue contact and lesion formation. Circ Arrhythmia Electrophys. 2018;11(4):e005831.
  • Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol (Lond). 1976;255(2):335–346.
  • Roberts DE, Hersh LT, Scher AM. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ Res. 1979;44(5):701–712.
  • Roberts DE, Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res. 1982;50(3):342–351.
  • Sundnes J, Lines GT, Cai X, et al. Computing the electrical activity in the heart. Vol. 1. Berlin: Springer Science & Business Media; 2007.
  • Tung L. A bi-domain model for describing ischemic myocardial dc potentials [PhD thesis]. Massachusetts Institute of Technology; 1978.
  • Clements JC, Nenonen J, Li P, et al. Activation dynamics in anisotropic cardiac tissue via decoupling. Ann Biomed Eng. 2004;32(7):984–990.
  • Yang H, Veneziani A. Estimation of cardiac conductivities in ventricular tissue by a variational approach. Inverse Probl. 2015;31(11):115001.
  • Beretta E, Cavaterra C, Cerutti MC, et al. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology. Inverse Probl. 2017;33(10). 105008.
  • Abidi Y, Bellassoued M, Mahjoub M, et al. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling. Inverse Probl. 2018;34(3):035005.
  • Veneroni M. Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Methods in the Applied Sciences¡/DIFdel¿Math Methods Appl Sci. 2006;29(14):1631–1661.
  • Veneroni M. Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal Real World Appl. 2009;10:849–868.
  • Carleman T. Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astronom. Fys. 1939;2B(17):1–9.
  • Bugheim AL, Klibanov MV. Global uniqueness of class of multidimensional inverse problems. Soviet math. dokl. 1981;24:244–247.
  • Klibanov MV. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J Inverse Ill-Posed Probl. 2013;21:477–560.
  • Klibanov MV. A class of inverse problems for nonlinear parabolic equations. Sib Math J. 1986;27(5):698–708.
  • Klibanov MV. On a class of inverse problems. Doklady akademii nauk. Russian Academy of Sciences. 1982;265:1306–1309.
  • Klibanov MV. Uniqueness in the large of solutions of inverse problems for a class of differential equations. Differ Equ. 1985;21:1390–1395.
  • Imanuvilov OY, Yamamoto M. Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 1998;14(5):1229–1245.
  • Bellassoued M. Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Probl. 2004;20(4):1033–1052.
  • Bellassoued M. Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients. Appl Anal. 2004;83(10):983–1014.
  • Bellassoued M, Yamamoto M. Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J mathématiques pures et appliquées. 2006;85(2):193–224.
  • Bellassoued M, Yamamoto M. Determination of a coefficient in the wave equation with a single measurement. Appl Anal. 2008;87(8):901–920.
  • Benabdallah A, Cristofol M, Gaitan P, et al. Inverse problem for a parabolic system with two components by measurements of one component. Appl Anal. 2009;88(5):683–709.
  • Bukhgem AL. Introduction to the theory of inverse problems. VSP,Utrecht. The Netherlands: Walter de Gruyter; 2000.
  • Bukhgeim AL, Cheng J, Isakov V, et al. Uniqueness in determining damping coefficients in hyperbolic equations. In: S. Saitoh, N. Hayashi , M. Yamamoto, editors. Analytic Extension Formulas and their Applications. Springer, Boston, MA. Vol. 9 2001. p. 27–46.
  • Benabdallah A, Gaitan P, Le Rousseau J. Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation. SIAM J Control Optim. 2007;46(5):1849–1881.
  • Baudouin L, Cerpa E, Crépeau E, et al. Lipschitz stability in an inverse problem for the Kuramoto–Sivashinsky equation. Appl Anal. 2013;92(10):2084–2102.
  • Franzone PC, Pavarino LF. A parallel solver for reaction–diffusion systems in computational electrocardiology. Math Models Methods Appl Sci. 2004;14(06):883–911.
  • Neu JC, Krassowska W. Homogenization of syncytial tissues. Crit Rev Biomed Eng. 1993;21(2):137–199.
  • Keener JP, Sneyd J. Mathematical physiology. Vol. 1. New York: Springer; 1998.
  • Tusscher KT, Hren R, Panfilov AV. Organization of ventricular fibrillation in the human heart. Circ Res. 2007;100(12):e87–e101.
  • Trayanova NA. Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res. 2011;108(1):113–128.
  • Abidi Y, Bellassoued M, Mahjoub M, et al. Ionic parameters identification of an inverse problem of strongly coupled pde's system in cardiac electrophysiology using Carleman estimates. Math Model Nat Phenom. 2019;14(2):202.
  • Lassoued J, Mahjoub M, Zemzemi N. Stability results for the parameter identification inverse problem in cardiac electrophysiology. Inverse Probl. 2016;32(11):115002.
  • Bendahmane M, Ainseba B, Yuan H. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Am Inst Math Sci. 2015;10:369–385.
  • Wu B, Yan L, Gao Y, et al. Carleman estimate for a linearized bidomain model in electrocardiology and its applications. Nonlinear Differ Equ Appl NoDEA. 2018;25(1):4.
  • Fursikov AV, Imanuvilov OYu.. Exact controllability of the Naiver-stokes and Bossiness equations. Russian Math Surveys. 1999;54(3):565–618.
  • Emanuilov OY. Controllability of parabolic equations. Sbornik Math. 1995;186(6):879–900.
  • Doubova A, Osses A, Puel J-P. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM Control Optim Calc Var. 2002;8:621–661.
  • Fernández-Cara E, González-Burgos M, Guerrero S, et al. Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim Calc Var. 2006;12(3):442–465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.