Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 6
231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sign-changing solutions for a fractional Schrödinger–Poisson system

ORCID Icon, , &
Pages 1547-1581 | Received 13 Jan 2020, Accepted 04 Oct 2021, Published online: 18 Oct 2021

References

  • Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math. 2012;136(5):521–573.
  • Laskin N. Fractional Schrödinger equation. Phys Rev E (3). 2002;66(5):056108. 7.
  • Autuori G, Pucci P. Elliptic problems involving the fractional Laplacian in RN. J Differ Equ. 2013;255(8):2340–2362.
  • Caffarelli L. Surfaces minimizing nonlocal energies. Atti Accad Naz Lincei Rend Lincei Mat Appl. 2009;20(3):281–299.
  • Caffarelli L, Silvestre L. Regularity results for nonlocal equations by approximation. Arch Ration Mech Anal. 2011;200(1):59–88.
  • Dipierro S, Palatucci G, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania). 2013;68(1):201–216.
  • Alves C, Figueiredo M. Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth. J Math Phys. 2019;60(1):011503. 13.
  • Alves C, Yang M. Existence of positive multi-bump solutions for a Schrödinger–Poisson system in R3. Discrete Contin Dyn Syst. 2016;36(11):5881–5910.
  • Cerami G, Molle R. Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity. 2016;29(10):3103–3119.
  • Chen S, Tang X, Yuan S. Normalized solutions for Schrödinger–Poisson equations with general nonlinearities. J Math Anal Appl. 2020;481(1):123447. 24.
  • Liu Z, Guo S. On ground state solutions for the Schrödinger–Poisson equations with critical growth. J Math Anal Appl. 2014;412(1):435–448.
  • Ruiz D. The Schrödinger–Poisson equation under the effect of a nonlinear local term. J Funct Anal. 2006;237(2):655–674.
  • Sun J, Wu T, Feng Z. Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system. J Differ Equ. 2016;260(1):586–627.
  • Sun J, Wu T, Feng Z. Non-autonomous Schrödinger–Poisson system in R3. Discrete Contin Dyn Syst. 2018;38(4):1889–1933.
  • Tang X, Chen S. Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials. Discrete Contin Dyn Syst. 2017;37(9):4973–5002.
  • Feng X. Nontrivial solution for Schrödinger–Poisson equations involving a fractional nonlocal operator via perturbation methods. Z Angew Math Phys. 2016;67(3):Art:74 1–10.
  • Feng X. Ground state solutions for Schrödinger–Poisson systems involving the fractional Laplacian with critical exponent. J Math Phys. 2019;60(5):051511, 12.
  • do Ó M, Zhang J, Squassina M. Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv Nonlinear Stud. 2016;16(1):15–30.
  • Teng K. Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J Differ Equ. 2016;261(6):3061–3106.
  • Bartsch T, Weth T. Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann Inst H Poincaré Anal Non Linéaire. 2005;22(3):259–281.
  • Bartsch T, Liu Z, Weth T. Sign changing solutions of superlinear Schrödinger equations. Comm Partial Differ Equ. 2004;29(1-2):25–42.
  • Noussair E, Wei J. On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems. Indiana Univ Math J. 1997;46(4):1255–1271.
  • Zou W. Sign-changing critical point theory. New York: Springer; 2008.
  • Bartsch T, Wang Z. On the existence of sign changing solutions for semilinear Dirichlet problems. Topol Meth Nonlinear Anal. 1996;7(1):115–131.
  • Liu J, Liu X, Wang Z. Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc Var Partial Differ Equ. 2015;52(3-4):565–586.
  • Liu W, Wang Z. Least energy nodal solution for nonlinear Schrödinger equation without (AR) condition. J Math Anal Appl. 2018;462(1):285–297.
  • Chang X, Wang Z. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J Differ Equ. 2014;256(8):2965–2992.
  • Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differ Equ. 2007;32(7-9):1245–1260.
  • Sun J, Li L, Tersian S. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem involving the fractional Laplacian. Fract Calc Appl Anal. 2017;20(5):1146–1164.
  • Yang J, Yan S, Yu X. Equations involving fractional Laplacian operator: compactness and application. J Funct Anal. 2015;269(1):47–79.
  • Ambrosio V, Isernia T. Sign-changing solutions for a class of Schrödinger equations with vanishing potentials. Atti Accad Naz Lincei Rend Lincei Mat Appl. 2018;29(1):127–152.
  • Wang Z, Zhou H. Radial sign-changing solution for fractional Schrödinger equation. Discrete Contin Dyn Syst. 2016;36(1):499–508.
  • Liu Z, Wang Z, Zhang J. Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system. Ann Mat Pura Appl (4). 2016;195(3):775–794.
  • Wang Z, Zhou H. Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3. Calc Var Partial Differ Equ. 2015;52(3-4):927–943.
  • Shuai W, Wang Q. Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3. Z Angew Math Phys. 2015;66(6):3267–3282.
  • Figueiredo M, Isernia T, Ambrosio V, et al. Sign-changing solutions for a class of zero mass nonlocal Schrödinger equations. Adv Nonlinear Stud. 2019;19(1):113–132.
  • Colorado A, Barrios B, Sánchez U. On some critical problems for the fractional Laplacian operator. J Differ Equ. 2012;252(11):6133–6162.
  • Brändle C, Colorado E, de Pablo A, et al. A concave–convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A. 2013;143(1):39–71.
  • Li Y, Jin T, Xiong J. On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J Eur Math Soc (JEMS). 2014;16(6):1111–1171.
  • Badiale M, Serra E. Semilinear elliptic equations for beginners: existence results via the variational approach. London: Universitext, Springer; 2011.
  • Bartsch T, Liu Z. On a superlinear elliptic p-Laplacian equation. J Differ Equ. 2004;198(1):149–175.
  • Szulkin A, Weth T. The method of Nehari manifold.Handbook of nonconvex analysis and applications. Somerville, MA: Int. Press; 2008.
  • Willem M. Minimax theorems. Boston: Birkhäuser; 1996. (Progress in Nonlinear Differential Equations and their Applications; 24).
  • Rabinowitz P. Minimax methods in critical point theory with applications to differential equations. Published for the Conference Board of the Mathematical Sciences; Washington (DC): American Mathematical Society; 1986. (CBMS Regional Conference Series in Mathematics; 65).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.