Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 8
139
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Finite volume element methods for two-dimensional time fractional reaction–diffusion equations on triangular grids

, , &
Pages 2248-2270 | Received 15 Oct 2019, Accepted 28 Dec 2021, Published online: 18 Jan 2022

References

  • Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000.
  • Magin RL. Fractional calculus in bioengineering. Redding: Begell House; 2006.
  • Ortigueira MD. Fractional calculus for scientists and engineers. New York: Springer; 2011.
  • Li C, Zeng F. Numerical methods for fractional calculus. Boca Raton: Chapman & Hall/CRC; 2015.
  • Li C, Cai M. Theory and numerical approximations of fractional integrals and derivatives. Philadelphia: SIAM; 2019.
  • Liu F, Zhuang P, Liu Q. Numerical methods of fractional partial differential equations and applications. Beijing: Chinese Science Press; 2015.
  • Sun Z, Gao G. Finite difference methods for fractional differential equations. 2nd ed. Beijing: Chinese Science Press; 2021.
  • Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys. 2007;225:1533–1552.
  • Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math. 2006;56:193–209.
  • Zhao Y, Shen C, Qu M, et al. Finite element methods for fractional diffusion equations. Int J Model Simul Sci Comput. 2020;11:2030001.
  • Li J, Huang Y, Lin Y. Developing finite element methods for Maxwell's equations in a cole-cole dispersive medium. SIAM J Sci Comput. 2011;33(6):3153–3174.
  • Li C, Zhao Z, Chen Y. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl. 2011;62:855–875.
  • Feng L, Liu F, Turner I, et al. Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains. Appl Math Model. 2018;59:441–463.
  • Feng L, Liu F, Turner I. Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun Nonlinear Sci Numer Simul. 2019;70:354–371.
  • Jiang Y, Ma J. High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math. 2011;235(11):3285–3290.
  • Liu Y, Du Y, Li H, et al. A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Comput Math Appl. 2015;70:2474–2492.
  • Liu Y, Du Y, Li H, et al. Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput Math Appl. 2015;70:573–591.
  • Jin B, Lazarov R, Zhou Z. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J Numer Anal. 2016;36(1):197–221.
  • Li M, Huang C, Jiang F. Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. Appl Anal. 2016;96(8):1269–1284.
  • Zhao Y, Chen P, Bu W, et al. Two mixed finite element methods for time-fractional diffusion equations. J Sci Comput. 2017;70(1):407–428.
  • Li D, Liao H, Sun W, et al. Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun Comput Phys. 2018;24(1):86–103.
  • Jiang Y, Xu X. A monotone finite volume method for time fractional Fokker-Planck equations. Sci China Math. 2019;62(4):783–794.
  • Ewing R, Lazarov R, Lin Y. Finite volume element approximations of nonlocal reactive flows in porous media. Numer Methods Partial Differ Equ. 2000;16(3):285–311.
  • Chatzipantelidis P, Lazarov RD, Thomée V. Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer Methods Partial Differ Equ. 2004;20(5):650–674.
  • Zhang Z. Error estimates of finite volume element method for the pollution in groundwater flow. Numer Methods Partial Differ Equ. 2009;25(2):259–274.
  • Carstensen C, Dond AK, Nataraj N, et al. Three first-order finite volume element methods for Stokes equations under minimal regularity assumptions. SIAM J Numer Anal. 2018;56(4):2648–2671.
  • Zhang T, Li Z. An analysis of finite volume element method for solving the Signorini problem. Appl Math Comput. 2015;270:830–841.
  • Luo Z, Xie Z, Shang Y, et al. A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems. J Comput Appl Math. 2011;235(8):2098–2111.
  • Bank RE, Rose DJ. Some error estimates for the box methods. SIAM J Numer Anal. 1987;24(4):777–787.
  • Li Y, Li R. Generalized difference methods on arbitrary quadrilateral networks. J Comput Math. 1999;17(6):653–672.
  • Li R, Chen Z, Wu W. Generalized difference methods for differential equations: numerical analysis of finite volume methods. New York: Marcel Dekker; 2000.
  • Sayevand K, Arjang F. Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems. Appl Math Comput. 2016;290:224–239.
  • Karaa S, Mustapha K, Pani AK. Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J Numer Anal. 2017;37(2):945–964.
  • Karaa S, Pani AK. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. ESAIM: M2AN. 2018;52:773–801.
  • Zhao J, Fang Z, Li H, et al. A Crank-Nicolson finite volume element method for time fractional Sobolev equations on triangular grids. Mathematics. 2020;8:1591.
  • Zhao J, Fang Z, Li H, et al. Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations. Adv Differ Equ. 2020;2020:688.
  • Adams R. Sobolev spaces. New York: Academic Press; 1975.
  • Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl. 2011;382:426–447.
  • Stynes M. Too much regularity may force too much uniqueness. Fract Calc Appl Anal. 2016;19:1554–1562.
  • Ervin V, Heuer N, Roop J. Regularity of the solution to 1-D fractional order diffusion equations. Math Comput. 2018;87:2273–2294.
  • Jin B, Li B, Zhou Z. Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J Sci Comput. 2017;39:A3129–A3152.
  • Stynes M, O'Riordan E, Gracia J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal. 2017;55:1057–1079.
  • Zeng F, Zhang Z, Karniadakis G E. Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput Methods Appl Mech Eng. 2017;327:478–502.
  • Liao H, Li D, Zhang J. Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J Numer Anal. 2018;56:1112–1133.
  • Zheng X, Wang H. An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J Numer Anal. 2020;58:330–352.
  • Yin B, Liu Y, Li H, et al. Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions. J Sci Comput. 2020;84:424.
  • Yin B, Liu Y, Li H, et al. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete Contin Dyn Syst Ser B. 2021;26:1447–1468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.