Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 11
175
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An inverse source problem of a semilinear time-fractional reaction–diffusion equation

&
Pages 2939-2959 | Received 18 Jun 2021, Accepted 16 Feb 2022, Published online: 03 Mar 2022

References

  • Day WA. Extensions of a property of the heat equation to linear thermoelasticity and other theories. Quart Appl Math. 1982;40(3):319–330.
  • Pao CV. Dynamics of reaction-diffusion equations with nonlocal boundary conditions. Quart Appl Math. 1995;53(1):173–186.
  • Yin HM. On a class of parabolic equations with nonlocal boundary conditions. J Math Anal Appl. 2004;294(2):712–728.
  • Slodička M. On a semilinear parabolic problem with four-Point boundary conditions. Mathematics. 2021;9(5):468.
  • Skubachevskii AL. Nonclassical boundary-value problems. I. J Math Sci. 2008;155(2):199–334.
  • Ginoa M, Cerbelli S, Roman HE. Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys A. 1992;191:449–453.
  • Metzler R, Klafter J. The random Walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep. 2000;339(1):1–77.
  • Nakagawa J, Sakamoto K, Yamamoto M. Overview to mathematical analysis for fractional diffusion equations – new mathematical aspects motivated by industrial collaboration. J Math-Ind. 2010;2:99–108.
  • Wang S, Zhao M, Li X. Radial anomalous diffusion in an annulus. Phys A. 2011;390:3397–3403.
  • Cheng J, Nakagawa J, Yamamoto M, et al. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 2009;25:115002.
  • Aleroev T S, Kirane M, Malik S A. Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition. Electron J Differ Equ. 2013;270:1–16.
  • Ismailov MI, Çiçek M. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl Math Model. 2016;40:4891–4899.
  • Kaltenbacher B, Rundell W. On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Prob. 2019;35:31.
  • Jin B, Rundell W. An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 2012;28:075010.
  • Zhang Y, Xu X. Inverse source problem for a fractional diffusion equation. Inverse Probl. 2011;27:4891–4899.
  • Li G, Zhang D, Jia X, et al. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 2013;29:065014.
  • Settara L, Atmania R. An inverse coefficient-source problem for a time-fractional diffusion equation. Int J Appl Math Stat. 2018;57(3):68–78.
  • Ozbilge B, Demir A, Kanca F, et al. Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions. Appl Math Inf Sci. 2016;10:283–289.
  • Rundell W, Xu X, Zuo L. The determination of an unknown boundary condition in a fractional diffusion equation. Appl Anal. 2013;92(7):1511–1526.
  • Tuan V. Inverse problem for fractional diffusion equation. Fract Calc Appl Anal. 2011;14:31–55.
  • Zhang Z, Zhou Z. Recovering the potential term in a fractional diffusion equation. IMA J Appl Math. 2017;82:579–600.
  • Cannon J R, Lin Y, Wang S. Determination of a control parameter in a parabolic partial differential equation. J Aust Math Soc Ser B. 1991;33:149–163.
  • Kanca F, Baglan I. An inverse problem for a quasilinear parabolic equation with nonlocal boundary and overdetermination conditions. J Inequalities Appl. 2014;76:76.
  • Isakov V. Inverse problems for partial differential equations. Vol. 127. New York: Springer-Verlag; 2006.
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204. Amsterdam: Elsevier Science Limited; 2006.
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Samko GS, Kilbas AA, Marichev DI. Fractional integrals and derivatives. Philadelphia (PA): Gordon and Breach Science Publishers; 1993. (Theory and Applications).
  • Il'in VA. How to express basis conditions and conditions for the equiconvergence with trigonometric series of expansions related to non-self-adjoint differential operators. Comput Math Appl. 1997;34:641–647.
  • Ionkin N. Solution of a boundary-value problem in heat conduction with non-classical boundary condition. Differ Equ. 1977;13:204–211.
  • Pollard H. The completely monotonic character of the Mittag-Leffler function Eα(−x). Bull Amer Math Soc. 1948;54:1115–1116.
  • Schneider WR. Completely monotone generalized Mittag-Leffler functions. Expo Math. 1996;14:3–24.
  • Miller KS, Samko SG. Completely monotonic functions. Integral Trans Spec Funct. 2001;12:389–402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.