359
Views
1
CrossRef citations to date
0
Altmetric
Articles

Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4171-4193 | Received 14 Oct 2021, Accepted 01 Mar 2022, Published online: 24 Mar 2022

References

  • Landa-Marban D, Radu FA, Nordbotten JM. Modeling and simulation of microbial enhanced oil recovery including interfacial area. Transp Porous Media. 2017;120(2):395–413.
  • Wu Z, Yue X, Cheng T, et al. Effect of viscosity and interfacial tension of surfactant-polymer flooding on oil recovery in high-temperature and high-salinity reservoirs. J Petrol Explor Prod Technol. 2014;4(1):9–16.
  • Mulligan MK, Rothstein JP. The effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows. Phys Fluids. 2011;23(2):022004.
  • Kovalchuk NM, Simmons MJ. Effect of surfactant dynamics on flow patterns inside drops moving in rectangular microfluidic channels. J Colloid Interface Sci. 2021;5(3):40.
  • Craster RV, Matar OK. Dynamics and stability of thin liquid films. Rev Modern Phys. 2009;81(3):1131–1198.
  • Hartnett C, Seric I, Mahady K, et al. Exploiting the Marangoni effect to initiate instabilities and direct the assembly of liquid metal filaments. Langmuir. 2017;33(33):8123–8128.
  • Mikelić A, Paoli L. On the derivation of the Buckley-Leverett model from the two fluid Navier-Stokes equations in a thin domain. Comput Geosci. 1997;1(1):59–83.
  • Sharmin S, Bringedal C, Pop IS. On upscaling pore-scale models for two-phase flow with evolving interfaces. Adv Water Res. 2020;142:103646.
  • Mikelić A. On an averaged model for the 2-fluid immiscible flow with surface tension in a thin cylindrical tube. Comput Geosci. 2003;7(3):183–196.
  • Lunowa SB, Bringedal C, Pop IS. On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Stud Appl Math. 2021;1:43.
  • Fasano A, Mikelić A. The 3D flow of a liquid through a porous medium with absorbing and swelling granules. Interfaces Free Bound. 2002;4(3):239–261.
  • Sweijen T, van Duijn CJ, Hassanizadeh SM. A model for diffusion of water into a swelling particle with a free boundary: application to a super absorbent polymer. Chem Eng Sci. 2017;172:407–413.
  • van Noorden TL. Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model Simul. 2008;7(3):1220–1236.
  • Bringedal C, Berre I, Pop IS, et al. Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp Porous Media. 2016;114(2):371–393.
  • Bringedal C, Kumar K. Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow. Transp Porous Media. 2017;120(3):553–577.
  • Gaerttner S, Frolkovic P, Knabner P, et al. Efficiency and accuracy of micro-macro models for mineral dissolution. Water Resour Res. 2020 Aug;56(8):e2020WR027585.
  • Caginalp G, Fife PC. Dynamics of layered interfaces arising from phase boundaries. SIAM J Appl Math. 1988;48(3):506–518.
  • Li X, Lowengrub J, Rätz A, et al. Solving PDEs in complex geometries: a diffuse domain approach. Commun Math Sci. 2009;7(1):81–107.
  • Boyer F, Lapuerta C, Minjeaud S, et al. Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp Porous Media. 2010;82(3):463–483.
  • Kim J. Phase-field models for multi-component fluid flows. Commun Comput Phys. 2012;12(3):613–661.
  • van Noorden TL, Eck C. Phase field approximation of a kinetic moving-boundary problem modelling dissolution and precipitation. Interfaces Free Bound. 2011;13(1):29–55.
  • Bringedal C, Von Wolff L, Pop IS. Phase field modeling of precipitation and dissolution processes in porous media: upscaling and numerical experiments. Multiscale Model Simul. 2020;18(2):1076–1112.
  • Redeker M, Rohde C, Pop IS. Upscaling of a tri-phase phase-field model for precipitation in porous media. IMA J Appl Math. 2016;81(5):898–939.
  • Rohde C, von Wolff L. Homogenization of nonlocal Navier–Stokes–Korteweg equations for compressible liquid-Vapor flow in porous media. SIAM J Math Anal. 2020;52(6):6155–6179.
  • Guo Z, Lin P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. Journal of Fluid Mechanics. 2015;766:226–271.
  • Mikelić A, Wheeler MF, Wick T. Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci. 2015;19(6):1171–1195.
  • Lee S, Mikelić A, Wheeler MF, et al. Phase-field modeling of two phase fluid filled fractures in a poroelastic medium. Multiscale Model Simul. 2018;16(4):1542–1580.
  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. i. interfacial free energy. J Chem Phys. 1958;28(2):258–267.
  • Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods App Sci. 2012;22(03):1150013. 40.
  • Garcke H, Lam KF, Stinner B. Diffuse interface modelling of soluble surfactants in two-phase flow. Commun Math Sci. 2014;12(8):1475–1522.
  • Chen J, Sun S, Wang X. Homogenization of two-phase fluid flow in porous media via volume averaging. J Comput Appl Math. 2019;353:265–282.
  • Schmuck M, Pradas M, Pavliotis GA, et al. Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media. Nonlinearity. 2013;26(12):3259–3277.
  • Daly KR, Roose T. Homogenization of two fluid flow in porous media. Proc A. 2015;471(2176):20140564. 20.
  • Baňas V, Mahato HS. Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow. Asymptot Anal. 2017;105(1–2):77–95.
  • Zhu G, Li A. Interfacial dynamics with soluble surfactants: A phase-field two-phase flow model with variable densities. Adv Geo-Energy Res. 2020;4(1):86–98.
  • Frank F, Liu C, Alpak FO, et al. A finite volume / discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Comput Geosci. 2018;22(2):543–563.
  • Ray D, Liu C, Riviere B. A discontinuous Galerkin method for a diffuse-interface model of immiscible two-phase flows with soluble surfactant. Comput Geosci. 2021;25(5):1775–1792.
  • Picchi D, Battiato I. The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media. Water Resour Res. 2018;54(9):6683–6707.
  • Quintard M, Whitaker S. Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment. Chem Eng Sci. 1993;48(14):2537–2564.
  • Lasseux D, Ahmadi A, Arani AAA. Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model. Transp Porous Media. 2008;75(3):371–400.
  • Mikelić A. A convergence theorem for homogenization of two-phase miscible flow through fractured reservoirs with uniform fracture distributions. Appl Anal. 1989;33(3–4):203–214.
  • Bourgeat A, Luckhaus S, Mikelić A. Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J Math Anal. 1996;27(6):1520–1543.
  • Amaziane B, Jurak M, Vrbaški A. Homogenization results for a coupled system modelling immiscible compressible two-phase flow in porous media by the concept of global pressure. Appl Anal. 2013;92(7):1417–1433.
  • Bunoiu R, Cardone G, Kengne R, et al. Homogenization of 2D Cahn-Hilliard-Navier-Stokes system. J Elliptic Parabol Equ. 2020;6(1):377–408.
  • Metzger S, Knabner P. Homogenization of two-phase flow in porous media from pore to Darcy scale: a phase-field approach. Multiscale Model Simul. 2021;19(1):320–343.
  • Kim J. A continuous surface tension force formulation for diffuse-interface models. J Comput Phys. 2005;204(2):784–804.
  • Bahriawati C, Carstensen C. Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput Methods Appl Math. 2005;5(4):333–361.
  • Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications. Vol. 44. Berlin: Springer; 2013.
  • Bastidas M, Bringedal C, Pop IS. A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Appl Math Comput. 2021;396:125933.
  • Bastidas M, Bringedal C, Pop IS, et al. Numerical homogenization of non-linear parabolic problems on adaptive meshes. J Comput Phys. 2020;425:109903.
  • Bastidas M, Sharmin S, Bringedal C. A numerical scheme for two-scale phase-field models in porous media. Conference Proceedings of the 6th ECCOMAS Young Investigators Conference YIC2021; Spain: Universitat Politècnica de València; 2021. (accepted).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.