Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 11
116
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The method of fundamental solutions for scattering of electromagnetic waves by a chiral object

&
Pages 3128-3147 | Received 22 May 2021, Accepted 15 Mar 2022, Published online: 28 Mar 2022

References

  • Kupradze VD, Aleksidze MA. The method of functional equations for the approximate solution of certain boundary value problems. Comput Math Math Phys. 1964;4:82–126.
  • Kupradze VD. On the approximate solution of problems in mathematical physics. Russ Math Surv. 1967;22:58–108.
  • Mathon R, Johnston R. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J Numer Anal. 1977;14:638–650.
  • Johnston RL, Mathon R. The computation of electric dipole fields in conducting media. Int J Numer Methods Eng. 1979;14(12):1739–1760.
  • Fairweather G, Karageorghis A, Martin PA. The method of fundamental solutions for scattering and radiation problems. Eng Anal Bound Elem. 2003;27:759–769.
  • Manelidze G, Natroshvili D. Method of fundamental solutions for transmission problems. Bull TICMI. 2015;19(2):21–39.
  • Buchukuri T, Chkadua O, Natroshvili D. Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity. Trans A Razmadze Math Inst. 2017;171:264–292.
  • Karageorghis A, Lesnic D. Application of the MFS to inverse obstacle scattering problems. Eng Anal Bound Elem. 2011;35(4):631–638.
  • Karageorghis A, Lesnic D. A meshless numerical identification of a sound-hard obstacle. Eng Anal Bound Elem. 2012;36(7):1074–1081.
  • Yoo SJ, Park Q-H. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics. 2019;8(2):249–261.
  • Brooks HW, Guida CW, Daniel GK. The significance of chirality in drug design and development. Curr Top Med Chem. 2011;11(7):760–770.
  • Castellano JA. Modifying light: ubiquitous today, liquid-crystal displays are the outgrowth of more than a century of experimentation and development. Am Sci. 2006;94(5):438–445.
  • Sheldrake GN, Crosby J. Chirality in industry: the commercial manufacture and applications of optically active compounds. Chichester: John Wiley & Sons; 1998.
  • Collins AN, Sheldrake G, Crosby J. Chirality in industry II: developments in the commercial manufacture and applications of optically active compounds. Vol. 2. Chichester: John Wiley & Sons; 1998.
  • Kolken HMA, Zadpoor AA. Auxetic mechanical metamaterials. RSC Adv. 2017;7(9):5111–5129.
  • Frenzel T, Kadi M, Wegener M. Three-dimensional mechanical metamaterials with a twist. Science. 2017;358(6366):1072–1074.
  • Lakhtakia A. Beltrami fields in Chiral media. Singapore: World Scientific; 1994.
  • Lakhtakia A, Varadan VK, Varadan VV. Time-harmonic electromagnetic fields in chiral media. Vol. 335, Berlin: Springer; 1989.
  • Athanasiadis C, Martin PA, Stratis IG. Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations. SIAM J Appl Math. 1999;59:1745–1762.
  • Athanasiadis C, Costakis G, Stratis IG. Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment. IMA J Appl Math. 2000;64:245–258.
  • Ola P. Boundary integral equations for the scattering of electromagnetic waves by a homogeneous chiral obstacle. J Math Phys. 1994;35(8):3969–3980.
  • Athanasiadis CE, Athanasiadou ES, Kikeri E. The reciprocity gap operator for electromagnetic scattering in chiral media. Appl Anal. 2021;1–11. DOI:10.1080/00036811.2021.1877683.
  • Athanasiadou ES. An inverse mixed impedance scattering problem in a chiral medium. Mathematics. 2021;9:104.
  • Pike ER, Sabatier PC. Scattering: two-Volume set: scattering and inverse scattering in pure and applied science. San Diego (CA): Elsevier; 2001.
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. 2nd ed. Berlin, Heidelberg: Springer; 1998.
  • Kersten H, Leis R. Die lsung der maxwellschen gleichungen durch vollstndige flchenfeldsysteme. Math Meth Appl Sci. 1985;7:40–54.
  • Mitrea M. The method of layer potentials for electromagnetic waves in chiral media. Forum Math. 2001;13:423–446.
  • Mitrea M. The method of layer potentials in electromagnetic scattering theory on nonsmooth domains. Duke Math J. 1995;77(1):111–133.
  • Mitrea D, Mitrea M, Pipher J. Vector potential theory on nonsmooth domains in R3 and applications to electromagnetic scattering. J Fourier Anal Appl. 1997;3:131–192.
  • Torres RH. A transmission problem in the scattering of electromagnetic waves by a penetrable object. SIAM J Math Anal. 1996;27(5):1406–1423.
  • Torres RH. Maxwell's equations and dielectric obstacles with Lipschitz boundaries. J London Math Soc. 1998;57(1):157–169.
  • Martin PA, Ola P. Boundary integral-equations for the scattering of electromagnetic-waves by a homogeneous dielectric obstacle. Proc R Soc Edinb A, Math. 1993;123:185–208.
  • Hahner E. An exterior boundary value problem for the Maxwell's equations with boundary data in a Sobolev space. Proc R Soc Edinb A. 1988;123:271–296.
  • Tai C-T. Dyadic Green functions in electromagnetic theory. Piscataway (NJ): IEEE; 1994.
  • Wu Z-S, Shang QC, Li Z. Calculation of electromagnetic scattering by a large chiral sphere. Appl Opt. 2012;51:6661–6668.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.