Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 13
82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Lifespan estimates for local solutions to the semilinear wave equation in Einstein–de Sitter spacetime

ORCID Icon
Pages 3577-3608 | Received 10 Dec 2020, Accepted 05 Jun 2022, Published online: 17 Jun 2022

References

  • Georgiev V, Lindblad H, Sogge CD. Weighted Strichartz estimates and global existence for semilinear wave equations. Am J Math. 1997;119(6):1291–1319.
  • Glassey RT. Existence in the large for ◻u=F(u) in two space dimensions. Math Z. 1981;178(2):233–261.
  • Glassey RT. Finite-time blow-up for solutions of nonlinear wave equations. Math Z. 1981;177(3):323–340.
  • John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr Math. 1979;28(1–3):235–268.
  • Kato T. Blow-up of solutions of some nonlinear hyperbolic equations. Commun Pure Appl Math. 1980;33(4):501–505.
  • Lindblad H, Sogge CD. Long-time existence for small amplitude semilinear wave equations. Am J Math. 1996;118(5):1047–1135.
  • Schaeffer J. The equation utt−Δu=|u|p for the critical value of p. Proc R Soc Edinb A. 1985;101(1–2):31–44.
  • Sideris TC. Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differ Equ. 1984;52(3):378–406.
  • Yordanov BT, Zhang QS. Finite time blow up for critical wave equations in high dimensions. J Funct Anal. 2006;231(2):361–374.
  • Zhou Y. Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Partial Differ Equ. 1995;8(2):135–144.
  • Zhou Y. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin Ann Math Ser B. 2007;28:205–212.
  • Imai T, Kato M, Takamura H, et al. The sharp lower bound of the lifespan of solutions to semilinear wave equations with low powers in two space dimensions. Asymptotic analysis for nonlinear dispersive and wave equations. Tokyo (Japan): Mathematical Society of Japan; 2019. p. 31–53. doi:10.2969/aspm/08110031
  • Catania D, Georgiev V. Blow-up for the semilinear wave equation in the Schwarzschild metric. Differ Integral Equ. 2006;19(7):799–830.
  • Lin Y, Lai N-A, Ming S. Lifespan estimate for semilinear wave equation in Schwarzschild spacetime. Appl Math Lett. 2020;99:105997, 4 pp.
  • Lindblad H, Metcalfe J, Sogge CD, et al. The Strauss conjecture on Kerr black hole backgrounds. Math Ann. 2014;359(3–4):637–661.
  • Marzuola J, Metcalfe J, Tataru D, et al. Strichartz estimates on Schwarzschild black hole backgrounds. Commun Math Phys. 2010;293(1):37–83.
  • Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Anal Real World Appl. 2018;40:14–54.
  • Galstian A. Semilinear shifted wave equation in the de Sitter spacetime with hyperbolic spatial part. Theory, numerics and applications of hyperbolic problems. I. Cham: Springer; 2018. p. 577–587. (Springer proceedings in mathematics & statistics; 236).
  • Galstian A, Yagdjian K. Global in time existence of self-interacting scalar field in de Sitter spacetimes. Nonlinear Anal Real World Appl. 2017;34:110–139.
  • Yagdjian K. The semilinear Klein–Gordon equation in de Sitter spacetime. Discrete Contin Dyn Syst S. 2009;2(3):679–696.
  • Yagdjian K. Global existence of the scalar field in de Sitter spacetime. J Math Anal Appl. 2012;396(1):323–344.
  • Yagdjian K, Galstian A. Fundamental solutions for the Klein–Gordon equation in de Sitter spacetime. Commun Math Phys. 2009;285:293–344.
  • Galstian A. Lp−Lq decay estimates for the wave equations with exponentially growing speed of propagation. Appl Anal. 2003;82(3):197–214.
  • Yagdjian K, Galstian A. Fundamental solutions of the wave equation in Robertson-Walker spaces. J Math Anal Appl. 2008;346(2):501–520.
  • Yagdjian K, Galstian A. Fundamental solutions for wave equation in Robertson-Walker model of universe and Lp−Lq-decay estimates. Discrete Contin Dyn Syst S. 2009;2(3):483–502.
  • Yagdjian K, Galstian A. The Klein–Gordon equation in anti-de Sitter spacetime. Rend Semin Mat Univ Politec Torino. 2009;67(2):271–292.
  • Galstian A, Kinoshita T, Yagdjian K. A note on wave equation in Einstein and de Sitter space-time. J Math Phys. 2010;51(5):052501.
  • Galstian A, Yagdjian K. Microlocal analysis for waves propagating in Einstein & de Sitter spacetime. Math Phys Anal Geom. 2014;17(1–2):223–246.
  • Galstian A, Yagdjian K. Finite lifespan of solutions of the semilinear wave equation in the Einstein-de Sitter spacetime. Rev Math Phys. 2020;32(7):2050018. doi:10.1142/S0129055X2050018X
  • Wakasa K, Yordanov B. Blow-up of solutions to critical semilinear wave equations with variable coefficients.J Differ Equ. 2019;266(9):5360–5376.
  • Wakasa K, Yordanov B. On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case. Nonlinear Anal. 2019;180:67–74.
  • Tsutaya K, Wakasugi Y. Blow up of solutions of semilinear wave equations in Friedmann Lemaître Robertson Walker spacetime. J Math Phys. 2020;61:091503. doi:10.1063/1.5139301
  • Chen W, Palmieri A. Nonexistence of global solutions for the semilinear Moore–Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst A. 2020;40(9):5513–5540. doi:10.3934/dcds.2020236
  • Chen W, Palmieri A. Blow-up result for a semilinear wave equation with a nonlinear memory term. In: Cicognani M et al., editors. Anomalies in partial differential equations. Cham: Springer; 2021. (Springer INdAM series; 43). doi:10.1007/978-3-030-61346-4_4
  • Lin J, Tu Z. Lifespan of semilinear generalized Tricomi equation with Strauss type exponent; preprint 2019. Available from: arXiv:1903.11351v2.
  • Palmieri A, Takamura H. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal. 2019;187:467–492. doi:10.1016/j.na.2019.06.016
  • Palmieri A, Takamura H. Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms. Nonlinear Differ Equ Appl. 2020;27:58. doi:10.1007/s00030-020-00662-8
  • Agemi R, Kurokawa Y, Takamura H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions. J Differ Equ. 2000;167(1):87–133.
  • Takamura H. Improved Kato's lemma on ordinary differential inequality and its with mixed data application to semilinear wave equations. Nonlinear Anal. 2015;125:227–240.
  • D'Abbicco M, Lucente S. NLWE with a special scale invariant damping in odd space dimension. In: Dynamical systems, differential equations and applications. 10th AIMS Conference, Suppl.; 2015. p. 312–319.
  • D'Abbicco M, Lucente S, Reissig M. A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J Differ Equ. 2015;259(10):5040–5073.
  • Nunes do Nascimento W, Palmieri A, Reissig M. Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. Math Nachr. 2017;290(11–12):1779–1805.
  • Palmieri A. Global existence results for a semilinear wave equation with scale-invariant damping and mass in odd space dimension. In: D'Abbicco M et al., editors. New tools for nonlinear PDEs and application (Trends in mathematics); 2019. doi:10.1007/978-3-030-10937-0_12
  • Palmieri A. A global existence result for a semilinear wave equation with scale-invariant damping and mass in even space dimension. Math Meth Appl Sci. 2019;0:1–27. doi:10.1002/mma.5542
  • Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differ Equ. 2019;266(2–3):1176–1220.
  • Palmieri A, Tu Z. Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity. J Math Anal Appl. 2019;470(1):447–469.
  • Zhou Y. Life span of classical solutions to utt−uxx=|u|1+α. Chin Ann Math Ser B. 1992;13:230–243.
  • Olver FWJ, Lozier DW, Boisvert RF, et al. NIST handbook of mathematical functions. New York (NY): Cambridge University Press; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.