139
Views
2
CrossRef citations to date
0
Altmetric
Articles

Probabilistic global well-posedness for a viscous nonlinear wave equation modeling fluid–structure interaction

, &
Pages 4349-4373 | Received 25 May 2022, Accepted 14 Jul 2022, Published online: 25 Jul 2022

References

  • Kuan J, Čanić S. Deterministic ill-posedness and probabilistic well-posedness of the viscous nonlinear wave equation describing fluid-structure interaction. Trans Amer Math Soc. 2021;374:5925–5994.
  • Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differ Equations. 2007;32(8):1245–1260.
  • Tao T. Nonlinear dispersive equations: local and global analysis. In: Conference Board of the Mathematical Sciences. Washington, Providence: American Mathematical Society; 2006. p. xvi+373. (CBMS Regional Conference Series in Mathematics; 106).
  • Burq N, Tzvetkov N. Random data Cauchy theory for supercritical wave equations I: local theory. Invent Math. 2008;173(3):449–475.
  • Carles R, Kappeler T. Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces. Bull Soc Math France. 2017;145(4):623–642.
  • Choffrut A, Pocovnicu O. Ill-posendess of the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int Math Res Not IMRN. 2018;2018(3):699–738.
  • Christ M, Colliander J, Tao T. Ill-posedness for nonlinear Schrödinger and wave equations. arXiv:math/0311048 [math.AP].
  • Forlano J, Okamoto M. A remark on norm inflation for nonlinear wave equations. Dyn Partial Differ Equations. 2020;17(4):361–381.
  • Kishimoto N. A remark on norm inflation for nonlinear Schrödinger equations. Commun Pure Appl Anal. 2019;18(3):1375–1402.
  • Oh T. A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcial Ekvac. 2017;60:259–277.
  • Oh T, Okamoto M, Tzvetkov N. Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation. Preprint.
  • Oh T, Wang Y. On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An Ştiinţ Univ Al I Cuza Iaşi Mat (N.S.). 2018;64(1):53–84.
  • Okamoto M. Norm inflation for the generalized Boussinesq and Kawahara equations. Nonlinear Anal. 2017;157:44–61.
  • Tzvetkov N. Random data wave equations. In: Flandoli F, Gubinelli M, and Hairer M, editors. Singular random dynamics. Cham: Springer; 2019. p. 221–313. (Lecture Notes in Mathematics; 2253).
  • de Roubin P, Okamoto M. Norm inflation for the viscous wave equations in negative Sobolev spaces. In preparation.
  • Bényi Á, Oh T, Pocovnicu O. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on Rd, d≥3. Trans Amer Math Soc Ser B. 2015;2:1–50.
  • Bényi, Á., Oh, T., Pocovnicu, O. (2015). Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Cham: Birkhäuser. doi:10.1007/978-3-319-20188-7_1
  • Bényi Á, Oh T, Pocovnicu O. Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on R3. Trans Amer Math Soc Ser B. 2019;6:114–160.
  • Bourgain J. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Comm Math Phys. 1996;176(2):421–445.
  • Burq N, Tzvetkov N. Probabilistic well-posedness for the cubic wave equation. J Eur Math Soc. 2014;16(1):1–30.
  • Colliander J, Oh T. Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T). Duke Math J. 2012;161(3):367–414.
  • Lührmann J, Mendelson D. Random data Cauchy theory for nonlinear wave equations of power-type on R3. Comm Partial Differ Equations. 2014;39(12):2262–2283.
  • Oh T, Okamoto M, Pocovnicu O. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete Contin Dyn Syst A. 2019;39(6):3479–3520.
  • Pocovnicu O. Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on Rd, d = 4 and 5. J Eur Math Soc (JEMS). 2017;19(8):2521–2575.
  • Bényi, Á., Oh, T., Pocovnicu, O. (2019). On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs. In: Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Cham: Birkhäuser. doi:10.1007/978-3-030-05210-2_1
  • Zhang T, Fang D. Random data Cauchy theory for the generalized incompressible Navier-Stokes equations. J Math Fluid Mech. 2012;14(2):311–324.
  • Oh T, Pocovnicu O. Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3. J Math Pures Appl. 2016;105:342–366.
  • Sun C, Xia B. Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three. Illinois J Math. 2016;60(2):481–503.
  • Kuan J, Čanić S. A stochastically perturbed fluid-structure interaction problem modeled by a stochastic viscous wave equation. J Differ Equations. 2022;310:45–98.
  • Liu R. Global well-posedness of the two-dimensional random viscous nonlinear wave equations. arXiv:2203.15393 [math.AP].
  • Liu R, Oh T. On the two-dimensional singular stochastic viscous nonlinear wave equations. arXiv:2106.11806 [math.AP].
  • Friz P, Victoir N. Multidimensional stochastic processes as rough paths: theory and applications. Cambridge: Cambridge University Press; 2010. (Cambridge Studies in Advanced Mathematics; 120).
  • Gubinelli M, Koch H, Oh T, et al. Global dynamics for the two-dimensional stochastic nonlinear wave equations. Int Math Res Not. 2021:rnab084.
  • Oh T, Pocovnicu O, Tzvetkov N. Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces, to appear in Ann. Inst. Fourier (Grenoble).
  • Bringmann B. Invariant Gibbs measures for the three-dimensional wave equation with a hartree nonlinearity II: dynamics. J Eur Math Soc. 2020.
  • Gubinelli M, Koch H, Oh T. Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. J Eur Math Soc. 2018.
  • Oh T, Okamoto M, Tolomeo L. Focusing ϕ34-model with a Hartree-type nonlinearity. arXiv:2009.03251 [math.PR].
  • Oh T, Okamoto M, Tolomeo L. Stochastic quantization of the Φ33-model. arXiv:2108.06777 [math.PR].
  • Latocca M. Almost sure existence of global solutions for supercritical semilinear wave equations. J Differ Equations. 2021;273:83–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.