Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 16
78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the radius of spatial analyticity for Ostrovsky equation with positive dispersion

&
Pages 4563-4580 | Received 11 Apr 2022, Accepted 31 Aug 2022, Published online: 12 Sep 2022

References

  • Ostrovsky LA. Nonlinear internal waves in a rotating ocean. Okeanologiya. 1978;18:181–191.
  • Constantin A, Ivanov RI. Equatorial wave-current interactions. Comm Math Phys. 2019;370:1–48.
  • Constantin A, Johnson RS. The dynamics of waves interacting with the equatorial undercurrent. Geophys Astrophys Fluid Dyn. 2015;109:311–358.
  • Benilov ES. On the surface waves in a shallow channel with an uneven bottom. Stud Appl Math. 1992;87:1–14.
  • Gilman OA, Grimshaw R, Stepanyants YA. Approximate and numerical solutions of the stationary Ostrovsky equation. Stud Appl Math. 1995;95:115–126.
  • Galkin VN, Stepanyants YA. On the existence of stationary solitary waves in a rotating fluid. J Appl Math Mech. 1991;55:939–943.
  • Grimshaw R. Evolution equations for weakly nonlinear long internal waves in a rotating fluid. Stud Appl Math. 1985;73:1–33.
  • Leonov AI. The effect of the earth's rotation on the propagation of weak nonlinear surface and internal long oceanic waves. Ann New York Acad Sci. 1981;373:150–159.
  • Shrira VI. Propagation of long nonlinear waves in a layer of a rotating fluid. Iza Akad Sci USSR Atmospher Ocean Phys. 1981;17:76–81.
  • Gui GL, Liu Y. On the Cauchy problem for the Ostrovsky equation with positive dispersion. Commun Partial Differ Equ. 2007;32:1895–1916.
  • Guo BL, Huo ZH. The global attractor of the damped forced Ostrovsky equation. J Math Anal Appl. 2007;329:392–407.
  • Huo ZH, Jia YL. Low-regularity solutions for the Ostrovsky equation. Proc Edinb Math Soc. 2006;49:87–100.
  • Isaza P, Mejía J. Cauchy problem for the Ostrovsky equation in spaces of low regularity. J Differential Equations. 2006;230:661–681.
  • Isaza P, Mejía J. Global Cauchy problem for the Ostrovsky equation. Nonlinear Anal TMA. 2007;67:1482–1503.
  • Isaza P, Mejía J. Local well-posedness and quantitative ill-posedness for the Ostrovsky equation. Nonlinear Anal TMA. 2009;70:2306–2316.
  • Linares F, Milanés A. Local and global well-posedness for the Ostrovsky equation. J Differential Equations. 2006;222:325–340.
  • Wang H, Cui SB. Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces. J Math Anal Appl. 2007;327:88–100.
  • Tsugawa K. Well-posedness and weak rotation limit for the Ostrovsky equation. J Differ Equ. 2009;247:3163–3180.
  • Yan W, Li YS, Huang JH, et al. The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differential Equations Appl. 2018;25:22. Paper No. 37 pp.
  • Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: the KdV equation. Geom Funct Anal. 1993;3:209–262.
  • Colliander J, Keel M, Staffilani G, et al. Sharp global well-posedness for KdV and modified KdV on R and T. J Am Math Soc. 2003;16:705–749.
  • Kenig CE, Ponce G, Vega L. Well-posedness of the initial value problem for the Korteweg-de Vries equation. J Am Math Soc. 1991;4:323–347.
  • Kenig CE, Ponce G, Vega L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun Pure Appl Math. 1993;46:527–620.
  • Kenig CE, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Am Math Soc. 1996;9:573–603.
  • Kenig CE, Ponce G, Vega L. On the ill-posedness of some canonical dispersive equations. Duke Math J. 2001;106:617–633.
  • Tao T. Multilinear weighted convolution of L2 functions, and applications to non-linear dispersive equations. Am J Math. 2001;123:839–908.
  • Guo ZH. Global well-posedness of the Korteweg-de Vries equation in H−34. J Math Pures Appl. 2009;91:583–597.
  • Kishimoto N. Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differ Int Equ. 2009;22:447–464.
  • Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Ann of Math. 2011;173:559–568.
  • Escher J, Matioc BV. Analyticity of rotational water waves. In: Escher J, Schrohe E, Seiler J, Walker C, editors. Elliptic and parabolic equations. Cham: Springer; 2015. p. 111–137.
  • Bona JL, Grujić Z, Kalisch H. Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann Inst H Poincaré Anal Non Linéaire. 2005;22:783–797.
  • Selberg S. Lower bounds on the radius of spatial analyticity for the KdV equation. Ann Henri Poincaré. 2017;18:1009–1023.
  • Grujić Z, Kalisch H. Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ Integral Equ. 2002;15:1325–1334.
  • Tesfahun A. Asymptotic lower bound for the radius of spatial analyticity to solutions of KdV equation. Commun Contemp Math. 2019;21:1850061. 33 pp.
  • Huang JH, Wang M. New lower bounds on the radius of spatial analyticity for the KdV equation. J Differential Equations. 2019;266:5278–5317.
  • Ahn J, Kim J, Seo I. On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations. Discrete Contin Dyn Syst. 2020;40:423–439.
  • Ahn J, Kim J, Seo I. Lower bounds on the radius of spatial analyticity for the Kawahara equation. Anal Math Phys. 2021;11:1–22.
  • Cappiello M, D'Ancona P, Nicola F. On the radius of spatial analyticity for semilinear symmetric hyperbolic systems. J Differential Equations. 2014;256:2603–2618.
  • Selberg S. On the radius of spatial analyticity for solutions of the Dirac-Klein-Gordon equations in two space dimensions. Ann Inst H Poincaré Anal Non Lineaire. 2019;36:1311–1330.
  • Selberg S, Tesfahun A. On the radius of spatial analyticity for the 1d Dirac-Klein-Gordon equations. J Differential Equations. 2015;259:4732–4744.
  • da Silva DO, Biyar M. Global analytic solutions for the nonlinear Schrödinger equation. Analysis(Berlin). 2020;40:203–213.
  • da Silva DO, Castro AJ. Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces. J Differential Equations. 2021;275:234–249.
  • Tesfahun A. On the radius of spatial analyticity for cubic nonlinear Schrödinger equations. J. Differential Equations. 2017;263:7496–7512.
  • Katznelson Y. An introduction to harmonic analysis. New York (NY): Dover Publications; 1976. Corrected edn.
  • Tao T. Nonlinear dispersive equations: local and global analysis. Providence (RI): American Mathematical Society; 2006. (CBMS Regional Conference Series in Mathematics, vol. 106). published for the Conference Board of the Mathematical Sciences; Washington, DC .
  • Colliander J, Keel M, Staffilani G, et al. Multilinear estimates for periodic KdV equations, and applications. J Funct Anal. 2004;211:173–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.