Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 1
101
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Inviscid limit for the full viscous MHD system with critical axisymmetric initial data

& ORCID Icon
Pages 343-383 | Received 24 Feb 2022, Accepted 10 Sep 2022, Published online: 22 Sep 2022

References

  • Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature. 1942;150(3805): 405-406.
  • Biskamp D. Nonlinear magnetohydrodynamics. Cambridge: Cambridge Univ. Press; 1991.
  • Bellac L, Lévy-Leblond JM. Galilean electromagnetism. Nuovo Cimento B. 1973;14:217–233.
  • Chandrasekhar S. Hydrodynamic and hydrodynamic stability. Oxford: Clarendon Press; 1961.
  • Lichtenstein L. Uer einige existenzprobleme der hydrodynamik homogenerun – zusammendruck barer, reibungsloser flubbigkeiten und die helmgoltzschen wirbelsatze. Math Z. 1925;23:89–154. Vol. 26, 1927. p. 196–323; Vol. 28, 1928. p. 387–415; Vol. 32, 1930. p. 608–725.
  • Gunther N. On the motion of fluid in a moving container. Izvestia Akad Nauk USSR, Ser FizMat. 1927;20:1323–1348. p. 1503–1532. Vol. 21, 1927. p. 521–526, p. 735–756. Vol. 22, 1928. p. 9–30.
  • Wolibner W. Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math Z. 1933;37(1):698–726.
  • Ebin DG, Marsden JE. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann Math (2). 1970;92:102–163.
  • Bourguignon JP, Brézis H. Remarks on the Euler equation. J  Funct Anal. 1974;15:341–363.
  • Kato T, Ponce G. Commutator estimates and the Euler and Navier–Stokes equations. Comm Pure Appl Math. 1988;41:891–907.
  • Grafakos L, Maldonado D, Naibo V. A remark on an endpoint Kato–Ponce inequality. Differ Integral Equ. 2013;27(5–6):415–424.
  • Bourgain J, Li D. On an endpoint Kato–Ponce inequality. Differ Integral Equ. 2014;27(11/12):1037–1072.
  • Beale JT, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3D−Euler equations. Commun Math Phys. 1984;94:61–66.
  • Vishik M. Hydrodynamics in Besov spaces. Arch Ration Mech Anal. 1998;145:197–214.
  • Hmidi T, Keraani S. Inviscid limit for the two-dimensional Navier–Stokes equation in a critical Besov space. Asymptotic Anal. 2007;53(3):125–138.
  • Ukhovskii M, Yudovich V. Axially symmetric flows of ideal and viscous fluids filling the whole space. J Appl Math Mech. 1968;32:52–69.
  • Shirota T, Yanagisawa T. Note on global existence for axially symmetric solutions of the Euler system. Proc Jpn Acad Ser A Math Sci. 1994;70(10):299–304.
  • Serfati P. Régularit' stratifiée et equation d'Euler 3D à temps rand. CR Acad Sci Paris Sér I Math. 1994;318(10):925–928.
  • Danchin R. Axisymmetric incompressible flows with bounded vorticity. Russian Math Surveys. 2007;62:73–94.
  • Elgindi TM. Finite-time singularity formation for C1,α solutions to the incompressible Euler equations on R3. Ann Math. 2021;194:647–727.
  • Abidi H, Hmidi T, Keraani S. On the global regularity of axisymmetric Navier–Stokes–Boussinesq system. Discrete Contin Dyn Sys. 2011;29(3):737–756.
  • Ladyzhenskaya O. Unique solvability in the large of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Zap Nauchn Semin Leningr Otd Math Inst Steklova. 1968;7:155–177. (in Russian).
  • Leonardi S, Màlek J, Necăs J, et al. On axially symmetric flows in R3. Zeitschrift Fur Analysis Und Ihre Anwendungen. Journal for Analysis and Its Applications. 1999;18:639–649.
  • Abidi H. Résultats de régularité de solutions axisymétriques pour le systéme de Navier–Stokes. Bull Sci Math. 2008;132(7):592–624.
  • Hmidi T, Zerguine M. Inviscid limit axisymmetric Navier–Stokes system. Differ Integral Equ. 2009;22(11–12):1223–1246.
  • Hmidi T, Keraani S. Incompressible viscous flows in borderline Besov spaces. Arch Ration Mech Anal. 2008;189(2):283–300.
  • Duvaut G, Lions J-L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Rational Mech Anal. 1972;46:241–279.
  • Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math. 1983;36(5):635–664.
  • Jiu Q, Niu D. Mathematical results related to a two-dimensional magneto-hydrodynamic equations. Acta Math Sci Ser B Engl Ed. 2006;26(4):744–756.
  • Zhou Y, Fan J. Regularity criteria for a magnetohydrodynamic-α model. Commun Pure Appl Anal. 2011;10(1):309–326.
  • Fan J, Ozawa T. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-α-MHD model. Phys- Kinet Relat Models. 2009;2:293–305.
  • Kozono H. Weak and classical solutions of the two-dimensional magnetohydrodynamics equations. Tohoku Math J. 1989;41:471–488.
  • Schmidt PG. On a magnetohydrodynamic problem of Euler type. J Differ Equ. 1988;74(2):318–335.
  • Secchi P. On the equations of ideal incompressible magnetohydrodynamics. Rend Sem Mat Univ Padova. 1993;90:103–119.
  • Hmidi T. On the Yudovich solutions for the ideal MHD equations. Nonlinearity. 2014;27(12):3117–3158.
  • Lei Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J Differ Equ. 2015;259:3202–3215.
  • Hassainia Z.  On the global well-posedness of the 3D axisymmetric resistive MHD equations. Ann. Henri Poincaré. 2022;23: 2877-2917.
  • Li Z, Pan X. A single-component BKM-type regularity criterion for the inviscid axially symmetric Hall-MHD system. J  Math Fluid Mech. 2022;24(1):1–19. Paper No. 16, 19 pp.
  • Wu G. Inviscid limit for axisymmetric flows without swirl in a critical Besov space. Z Angew Math Phys. 2010;61:63–72.
  • Wu J. Viscous and inviscid magneto-hydrodynamics equations. J  D'anal Math. 1997;73:251–265.
  • Bahouri H, Chemin J-Y, Danchin R. Fourier analysis and nonlinear partial differential equations. Berlin Heidelberg: Springer-Verlag; 2011.
  • Chemin J-Y. Perfect incompressible fluids. Oxford: Oxford University Press; 1998.
  • Bony J-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann De L'Ecole Norm. 1981;Sup(14):209–246.
  • Abidi H, Hmidi T, Keraani S. On the global well-posedness for the axisymmetric Euler equations. Math. Ann. 2010;347:15–41.
  • Chen Q, Miao C, Zhang Z. A new Bernstein inequality and the 2D dissipative quasigeostrophic equation. Commun Math Phys. 2007;271:821–838.
  • Serfati P. Solutions C∞ en temps, n−log Lipschitz bornées en espace et équation d'Euler. CR Acad Sci Paris Sér I Math. 1995;320(5):555–558.
  • Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv Differ Equ. 2007;12(4):461–480.
  • Hmidi T, Keraani S, Rousset F. Global well-posedness for an Euler–Boussinesq system with critical dissipation. Comm Partial Differ Equ. 2011;36(3):420–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.