Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 17
203
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimal control for a fully parabolic singular chemotaxis model with indirect signal consumption in two space dimensions

&
Pages 4779-4804 | Received 28 Jan 2022, Accepted 17 Oct 2022, Published online: 27 Oct 2022

References

  • Tao Y, Winkler M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J Differ Equ. 2012;252(3):2520–2543.
  • Fuest M. Analysis of a chemotaxis model with indirect signal absorption. J Differ Equ. 2019;267(8):4778–4806.
  • Winkler M. Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient Taxis(-Stokes) systems?. Int Math Res Not IMRN. 2021;2021(11):8106–8152.
  • Winkler M. Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J Math Anal. 2015;47(4):3092–3115.
  • Keller EF, Segel LA. Traveling bans of chemotactic bacteria: a theoretical analysis. J Theor Biol. 1971;30(2):235–248.
  • Lankeit J. Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J Differ Equ. 2017;262(7):4052–4084.
  • Winkler M. Renormalized radial large-data solutions to the higher dimensional Keller–Segel system with singular sensitivity and signal absorption. J Differ Equ. 2018;264(3):2310–2350.
  • Winkler M. Chemotactic cross-diffusion in complex frameworks. Math Models Methods Appl Sci. 2016;26(11):2035–2040.
  • Black T. Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D. J Differ Equ. 2018;265(5):2296–2339.
  • Viglialoro G. Global existence in a two-dimensional chemotaxis-consumption model with weakly singular sensitivity. Appl Math Lett. 2019;91:121–127.
  • Winkler M. Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete Continuous Dyn Syst Ser B. 2022;27(11):6565–6587.
  • Aida M, Osaki K, Tsujikawa T, et al. Chemotaxis and growth system with singular sensitivity function. Nonlinear Anal Real World Appl. 2005;6(2):323–336.
  • Winkler M. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun Partial Differ Equ. 2010;35(8):1516–1537.
  • Tello JI, Winkler M. A chemotaxis system with logistic source. Commun Partial Differ Equ. 2007;32(6):849–877.
  • Winkler M. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Continuous Dyn Syst Ser B. 2017;22(7):2777–2793.
  • Tao Y, Winkler M. Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J Eur Math Soc. 2017;19(12):3641–3678.
  • Zhang W, Niu P, Liu S. Large time behavior in chemotaixs model with logistic growth and indirect signal production. Nonlinear Anal Real World Appl. 2019;50:484–497.
  • Xing J, Zheng P, Xiang Y, et al. On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption. Z Angew Math Phys. 2021;72(3): Paper No. 105, 21 pp.
  • Lankeit E, Lankeit J. On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity. 2019;32(5):1569–1596.
  • Li J, Wang Z. Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space. J Differ Equ. 2020;268(11):6940–6970.
  • Cavaterra C, Rocca E, Wu H. Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in 2D. Arch Rat Mech Anal. 2017;224(3):1037–1086.
  • Chen B, Liu C. Optimal distributed control of a Allen-Cahn/Cahn-Hilliard system with temperature. Appl Math Optim. 2021;84(S2):1639–1684.
  • Colli P, Gilardi G, Rocca E, et al. Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity. 2017;30(6):2518–2546.
  • Liu C, Zhang X. Optimal control of a new mechanochemical model with state constraint. Math Methods Appl Sci. 2021;44(11):9237–9263.
  • Ryu SU, Yagi A. Optimal control of Keller-Segel equations. J Math Anal Appl. 2001;256(1):45–66.
  • Guillén-González F, Mallea-Zepeda E, Rodríguez-Bellido M. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM Control Optim Calc Var. 2020;26: Paper No. 29, 21 pp.
  • Yuan Y, Liu C. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electron Res Arch. 2021;29(6):4269–4296.
  • Liu C, Yuan Y. Optimal control of a fully parabolic attraction-repulsion chemotaxis model with logistic source in 2D. Appl Math Optim. 2022;85(1):1–38. Paper no. 7.
  • Chen B, Li H, Liu C. Optimal distributed control for a coupled phase-field system. Discrete Continuous Dyn Syst Ser B. 2022;27(3):1789–1825.
  • Kahle C, Lam KF. Parameter identification via optimal control for a Cahn–Hilliard-chemotaxis system with a variable mobility. Appl Math Optim. 2020;82(1):63–104.
  • Liu C, Zhang X. Optimal distributed control for a new mechanochemical model in biological patterns. J Math Anal Appl. 2019;478(2):825–863.
  • Zhang X, Li H, Liu C. Optimal control problem for the Cahn–Hilliard/Allen–Cahn equation with state constraint. Appl Math Optim. 2020;82(2):721–754.
  • Friedman A. Partial differential equations. New York: Holt, Rinehart and Winston; 1969.
  • Feireisl E, Novotný A. Singular limits in thermodynamics of viscous fluids. Basel: Birkhäuser Verlag; 2009. (Advances in Mathematical Fluid Mechanics)
  • Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J Differ Equ. 2010;248(12):2889–2905.
  • Lankeit E, Lankeit J. Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption. Nonlinear Anal Real World Appl. 2019;46:421–445.
  • Simon J. Compact sets in the space Lp(0,T;B). Ann Mat Pura Appl. 1987;146:65–96.
  • Lions JL. Quelques métodes de résolution des problémes aux limites non linéares. Paris: Dunod; 1969.
  • Zowe J, Kurcyusz S. Regularity and stability for the mathematical programming problem in Banach spaces. Appl Math Optim. 1979;5(1):49–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.