Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 6
101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-time dynamics of a problem of strain gradient porous elastic theory with nonlinear damping and source terms

ORCID Icon & ORCID Icon
Pages 1009-1035 | Received 09 Apr 2022, Accepted 16 Jun 2023, Published online: 26 Jun 2023

References

  • Toupin RA. Elastic materials with couple stresses. Arch Ration Mech Anal. 1962;11:385–414. doi: 10.1007/BF00253945
  • Toupin RA. Theories of elasticity with couple-stress. Arch Ration Mech Anal. 1964;17:85–112. doi: 10.1007/BF00253050
  • Mindlin RD. Micro-structure in linear elasticity. Arch Ration Mech Anal. 1964;16:51–78. doi: 10.1007/BF00248490
  • Mindlin RD, Eshel NN. On first strain-gradient theories in linear elasticity. Int J Solids Struct. 1968;4:109–124. doi: 10.1016/0020-7683(68)90036-X
  • Cowin SC. The viscoelastic behavior of linear elastic materials with voids. J Elast. 1985;15:185–191. doi: 10.1007/BF00041992
  • Cowin SC, Nunsiato JW. Linear elastic materials with voids. J Elast. 1983;13:125–147. doi: 10.1007/BF00041230
  • Aouadi M, Amendola A, Tibullo V. Asymptotic behavior in Form II Mindlin's strain gradient theory for porous thermoelastic diffusion materials. J Therm Stress. 2020;43(2):191–209. doi: 10.1080/01495739.2019.1653802
  • Ieşan D. On the grade consistent theories of micromorphic solids. AIP Conf Proc. 2011;1329:130–149. doi: 10.1063/1.3546081
  • Nunziato JW, Cowin SC. A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal. 1979;72:175–201. doi: 10.1007/BF00249363
  • Pamplona PX, Muñoz Rivera JE, Quintanilla R. Stabilization in elastic solids with voids. J Math Anal Appl. 2009;350:37–49. doi: 10.1016/j.jmaa.2008.09.026
  • Apalara TA. Exponential decay in one-dimensional porous dissipation elasticity. Quart J Mech Appl Math. 2017;70:363–372. doi: 10.1093/qjmam/hbx012
  • Apalara TA. A general decay for a weakly nonlinearly damped porous system. J Dyn Control Syst. 2019;25(3):311–322. doi: 10.1007/s10883-018-9407-x
  • Apalara TA, Soufyane A. Energy decay for a weakly nonlinear damped porous system with a nonlinear delay. Appl Anal. 2022;101(17):6113–6135. doi: 10.1080/00036811.2021.1919642
  • Dos Santos MJ, Feng B, Almeida Júnior DS, et al. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete Contin Dyn Syst B. 2021;26(5):2805–2828. doi: 10.3934/dcdsb.2020206
  • Freitas MM, Santos ML, Langa JA. Porous elastic system with nonlinear damping and sources terms. J Differ Equ. 2018;264:2970–3051. doi: 10.1016/j.jde.2017.11.006
  • Khochemane HE, Djebabla A, Zitouni S, et al. Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory. J Math Phys. 2020;61(2):021505. doi: 10.1063/1.5131031
  • Khochemane HE, Zitouni S, Bouzettouta L. Stability result for a nonlinear damping porous-elastic system with delay term. Nonlinear Stud. 2020;27(2):487–503.
  • Magaña A, Quintanilla R. On the time decay of solutions in one-dimensional theories of porous materials. Int Solids Struct. 2006;43:3414–3427. doi: 10.1016/j.ijsolstr.2005.06.077
  • Muñoz Rivera JE, Quintanilla R. On the time polynomial decay in elastic solids with viods. J Math Anal Appl. 2008;338:1296–1309. doi: 10.1016/j.jmaa.2007.06.005
  • Pamplona PX, Muñoz Rivera JE, Quintanilla R. On the decay of solutions for porous-elastic system with history. J Math Anal Appl. 2011;379:682–705. doi: 10.1016/j.jmaa.2011.01.045
  • Quintanilla R. Slow decay for one-dimensional porous dissipation elasticity. Appl Math Lett. 2003;16:487–491. doi: 10.1016/S0893-9659(03)00025-9
  • Santos ML, Almeida Júnior DS. On porous-elastic system with localized damping. Z Angew Math Phys. 2016;67:1–18. doi: 10.1007/s00033-016-0622-6
  • Santos ML, Almeida Júnior DS. On the porous-elastic system with Kelvin–Voigt damping. J Math Anal Appl. 2017;445:498–512. doi: 10.1016/j.jmaa.2016.08.005
  • Santos ML, Campelo ADS, Almeida Júnior DS. On the decay rates of porous elastic systems. J Elast. 2017;127:79–101. doi: 10.1007/s10659-016-9597-y
  • Santos ML, Campelo ADS, Almeida Júnior DS. Rates of decay for porous elastic system weakly dissipative. Acta Appl Math. 2017;151:1–26. doi: 10.1007/s10440-017-0100-y
  • Ieşan D. Thermoelasticity of nonsimple materials. J Therm Stresses. 1983;6:167–188. doi: 10.1080/01495738308942176
  • Quintanilla R. Thermoelasticity without energy dissipation of nonsimple materials. Z Angew Math Mech. 2003;83:172–180. doi: 10.1002/zamm.200310017
  • Sare Fernández HD, Muñoz Rivera JE, Quintanilla R. Decay of solutions in nonsimple thermoelastic bars. Int J Eng Sci. 2010;48:1233–1241. doi: 10.1016/j.ijengsci.2010.04.014
  • Aouadi M. On uniform decay of a nonsimple thermoelastic bar with memory. J Math Anal Appl. 2013;402:745–757. doi: 10.1016/j.jmaa.2013.01.059
  • Aouadi M. Stability aspects in a nonsimple thermoelastic diffusion problem. Appl Anal. 2013;92(9):1816–1828. doi: 10.1080/00036811.2012.702341
  • Pata V, Quintanilla R. On the decay of solutions in nonsimple elastic solids with memory. J Math Anal Appl. 2010;363:19–28. doi: 10.1016/j.jmaa.2009.07.055
  • Magaña A, Quintanilla R. Exponential decay in nonsimple thermoelasticity of type III. Math Meth Appl Sci. 2014;39:225–235. doi: 10.1002/mma.3472
  • Forest S, Amestoy M. Hypertemperature in thermoelastic solids. C R Mecanique. 2008;336:347–353. doi: 10.1016/j.crme.2008.01.007
  • Forest S, Sievert R, Aifantis EC. Strain gradient crystal plasticity: thermomechanical formulations and applications. J Mech Behav Mat. 2002;13:219–232. doi: 10.1515/JMBM.2002.13.3-4.219
  • Ieşan D. Thermoelastic models of continua. Dordrecht: Kluwer Academic Publishers; 2004.
  • Ieşan D, Quintanilla R. On the grade consistent theory of micropolar thermoelasticity. J Therm Stresses. 1992;15:393–417. doi: 10.1080/01495739208946146
  • Liu Z, Magana A, Quintanilla R. On the time decay of solutions for non-simple elasticity with voids. Z Angew Math Mech. 2016;96(7):857–873. doi: 10.1002/zamm.v96.7
  • Feng B. On a semilinear Timoshenko-Coleman-Gurtin system: quasi-stability and attractors. Discrete Contin Dyn Sys. 2017;37:4729–4751. doi: 10.3934/dcds.2017203
  • Ma TF, Monteiro RN. Singular limit and long-time dynamics of Bresse systems. SIAM J Math Anal. 2017;49:2468–2495. doi: 10.1137/15M1039894
  • Santos ML, Freitas MM. Global attractors for a mixture problem in one-dimensional solids wit nonlinear damping and source terms. Commun Pure Appl Anal. 2019;18:1869–1890. doi: 10.3934/cpaa.2019087
  • Barbu V. Nonlinear differential equations of monotone types in Banach spaces. New York: Springer; 2010.
  • Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping. Mem. Amer. Math. Soc. vol. 195, no. 912, Providence; 2008.
  • Chueshov I, Lasiecka I. Von Karman evolution equations: well-posedness and long-time dynamics. New York: Springer; 2010. (Springer Monographs in Mathematics).
  • Hoang LT, Olson EJ, Robinson JC. On the continuity of global attractors. Proc Amer Math Soc. 2015;143:4389–4395. doi: 10.1090/proc/2015-143-10
  • Pei P, Rammaha MA, Toundykov D. Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations. Nonlinear Anal. 2014;105:62–85. doi: 10.1016/j.na.2014.03.024
  • Chueshov I, Eller M, Lasiecka I. On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Comm Partial Differ Equ. 2002;27:1901–1951. doi: 10.1081/PDE-120016132
  • Chueshov I, Lasiecka I. Attractors for second-order evolution equations with a nonlinear damping. J Dyn Differ Equ. 2004;16:469–512. doi: 10.1007/s10884-004-4289-x
  • Lasiecka I, Ruzmaikina AA. Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation. J Math Anal Appl. 2002;270:16–50. doi: 10.1016/S0022-247X(02)00006-9
  • Geredeli PG, Lasiecka I. Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity. Nonlinear Anal. 2013;91:72–92. doi: 10.1016/j.na.2013.06.008
  • Hale JK, Raugel G. Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J Differ Equ. 1988;73:197–214. doi: 10.1016/0022-0396(88)90104-0
  • Simon J. Compact sets in the space Lp(0,T;B). Ann Mat Pura Appl. 1987;146:65–96. doi: 10.1007/BF01762360

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.